The previous attempt at working around this warning seems to no longer
work with gcc 13
In function ‘eap_handle_response’,
inlined from ‘eap_rx_packet’ at src/eap.c:570:3:
src/eap.c:421:49: error: ‘vendor_id’ may be used uninitialized [-Werror=maybe-uninitialized]
421 | (type == EAP_TYPE_EXPANDED && vendor_id == (id) && vendor_type == (t))
| ~~~~~~~~~~^~~~~~~
src/eap.c:533:20: note: in expansion of macro ‘IS_EXPANDED_RESPONSE’
533 | } else if (IS_EXPANDED_RESPONSE(our_vendor_id, our_vendor_type))
| ^~~~~~~~~~~~~~~~~~~~
src/eap.c: In function ‘eap_rx_packet’:
src/eap.c:431:18: note: ‘vendor_id’ was declared here
431 | uint32_t vendor_id;
| ^~~~~~~~~
width must be initialized since it depends on best not being NULL. If
best passes the non-NULL check above, then width must be initialized
since both width and best are set at the same time.
For IWD to work correctly either 2.4GHz or 5GHz bands must be enabled
(even for 6GHz to work). Check this and don't allow IWD to initialize
if both 2.4 and 5GHz is disabled.
wiphy_get_allowed_freqs was only being used to see if 6GHz was disabled
or not. This is expensive and requires several allocations when there
already exists wiphy_is_band_disabled(). The prior patch modified
wiphy_is_band_disabled() to return -ENOTSUP which allows scan.c to
completely remove the need for wiphy_get_allowed_freqs.
scan_wiphy_watch was also slightly re-ordered to avoid allocating
freqs_6ghz if the scan request was being completed.
The function wiphy_band_is_disabled() return was a bit misleading
because if the band was not supported it would return true which
could be misunderstood as the band is supported, but disabled.
There was only one call site and because of this behavior
wiphy_band_is_disabled needed to be paired with checking if the
band was supported.
To be more descriptive to the caller, wiphy_band_is_disabled() now
returns an int and if the band isn't supported -ENOTSUP will be
returned, otherwise 1 is returned if the band is disabled and 0
otherwise.
This adds support to allow users to disable entire bands, preventing
scanning and connecting on those frequencies. If the
[Rank].BandModifier* options are set to 0.0 it will imply those
bands should not be used for scanning, connecting or roaming. This
now applies to autoconnect, quick, hidden, roam, and dbus scans.
This is a station only feature meaning other modules like RRM, DPP,
WSC or P2P may still utilize those bands. Trying to limit bands in
those modules may sometimes conflict with the spec which is why it
was not added there. In addition modules like DPP/WSC are only used
in limited capacity for connecting so there is little benefit gained
to disallowing those bands.
To support user-disabled bands periodic scans need to specify a
frequency list filtered by any bands that are disabled. This was
needed in scan.c since periodic scans don't provide a frequency
list in the scan request.
If no bands are disabled the allowed freqs API should still
result in the same scan behavior as if a frequency list is left
out i.e. IWD just filters the frequencies as opposed to the kernel.
Currently the only way a scan can be split is if the request does
not specify any frequencies, implying the request should scan the
entire spectrum. This allows the scan logic to issue an extra
request if 6GHz becomes available during the 2.4 or 5GHz scans.
This restriction was somewhat arbitrary and done to let periodic
scans pick up 6GHz APs through a single scan request.
But now with the addition of allowing user-disabled bands
periodic scans will need to specify a frequency list in case a
given band has been disabled. This will break the scan splitting
code which is why this prep work is being done.
The main difference now is the original scan frequencies are
tracked with the scan request. The reason for this is so if a
request comes in with a limited set of 6GHz frequences IWD won't
end up scanning the full 6GHz spectrum later on.
This is more or less copied from scan_get_allowed_freqs but is
going to be needed by station (basically just saves the need for
station to do the same clone/constrain sequence itself).
One slight alteration is now a band mask can be passed in which
provides more flexibility for additional filtering.
This exposes the [Rank].BandModifier* settings so other modules
can use then. Doing this will allow user-disabling of certain
bands by setting these modifier values to 0.0.
The loop iterating the frequency attributes list was not including
the entire channel set since it was stopping at i < band->freqs_len.
The freq_attrs array is allocated to include the last channel:
band->freq_attrs = l_new(struct band_freq_attrs, num_channels + 1);
band->freqs_len = num_channels;
So instead the for loop should use i <= band->freqs_len. (I also
changed this to start the loop at 1 since channel zero is invalid).
The auth/action status is now tracked in ft.c. If an AP rejects the
FT attempt with "Invalid PMKID" we can now assume this AP is either
mis-configured for FT or is lagging behind getting the proper keys
from neighboring APs (e.g. was just rebooted).
If we see this condition IWD can now fall back to reassociation in
an attempt to still roam to the best candidate. The fallback decision
is still rank based: if a BSS fails FT it is marked as such, its
ranking is reset removing the FT factor and it is inserted back
into the queue.
The motivation behind this isn't necessarily to always force a roam,
but instead to handle two cases where IWD can either make a bad roam
decision or get 'stuck' and never roam:
1. If there is one good roam candidate and other bad ones. For
example say BSS A is experiencing this FT key pull issue:
Current BSS: -85dbm
BSS A: -55dbm
BSS B: -80dbm
The current logic would fail A, and roam to B. In this case
reassociation would have likely succeeded so it makes more sense
to reassociate to A as a fallback.
2. If there is only one candidate, but its failing FT. IWD will
never try anything other than FT and repeatedly fail.
Both of the above have been seen on real network deployments and
result in either poor performance (1) or eventually lead to a full
disconnect due to never roaming (2).
Certain return codes, though failures, can indicate that the AP is
just confused or booting up and treating it as a full failure may
not be the best route.
For example in some production deployments if an AP is rebooted it
may take some time for neighboring APs to exchange keys for
current associations. If a client roams during that time it will
reject saying the PMKID is invalid.
Use the ft_associate call return to communicate the status (if any)
that was in the auth/action response. If there was a parsing error
or no response -ENOENT is still returned.
Removed several debug prints which are very verbose and provide
little to no important information.
The get_scan_{done,callback} prints are pointless since all the
parsed scan results are printed by station anyways.
Printing the BSS load is also not that useful since it doesn't
include the BSSID. If anything the BSS load should be included
when station prints out each individual BSS (along with frequency,
rank, etc).
The advertisement protocol print was just just left in there by
accident when debugging, and also provides basically no useful
information.
Some APs don't include the RSNE in the associate reply during
the OWE exchange. This causes IWD to be incompatible since it has
a hard requirement on the AKM being included.
This relaxes the requirement for the AKM and instead warns if it
is not included.
Below is an example of an association reply without the RSN element
IEEE 802.11 Association Response, Flags: ........
Type/Subtype: Association Response (0x0001)
Frame Control Field: 0x1000
.000 0000 0011 1100 = Duration: 60 microseconds
Receiver address: 64:c4:03:88:ff:26
Destination address: 64:c4:03:88:ff:26
Transmitter address: fc:34:97:2b:1b:48
Source address: fc:34:97:2b:1b:48
BSS Id: fc:34:97:2b:1b:48
.... .... .... 0000 = Fragment number: 0
0001 1100 1000 .... = Sequence number: 456
IEEE 802.11 wireless LAN
Fixed parameters (6 bytes)
Tagged parameters (196 bytes)
Tag: Supported Rates 6(B), 9, 12(B), 18, 24(B), 36, 48, 54, [Mbit/sec]
Tag: RM Enabled Capabilities (5 octets)
Tag: Extended Capabilities (11 octets)
Ext Tag: HE Capabilities (IEEE Std 802.11ax/D3.0)
Ext Tag: HE Operation (IEEE Std 802.11ax/D3.0)
Ext Tag: MU EDCA Parameter Set
Ext Tag: HE 6GHz Band Capabilities
Ext Tag: OWE Diffie-Hellman Parameter
Tag Number: Element ID Extension (255)
Ext Tag length: 51
Ext Tag Number: OWE Diffie-Hellman Parameter (32)
Group: 384-bit random ECP group (20)
Public Key: 14ba9d8abeb2ecd5d95e6c12491b16489d1bcc303e7a7fbd…
Tag: Vendor Specific: Broadcom
Tag: Vendor Specific: Microsoft Corp.: WMM/WME: Parameter Element
Reported-By: Wen Gong <quic_wgong@quicinc.com>
Tested-By: Wen Gong <quic_wgong@quicinc.com>
Hostapd commit b6d3fd05e3 changed the PMKID derivation in accordance
with 802.11-2020 which then breaks PMKID validation in IWD. This
breaks the FT-8021x AKM in IWD if the AP uses this hostapd version
since the PMKID doesn't validate during EAPoL.
This updates the PMKID derivation to use the correct SHA hash for
this AKM and adds SHA1 based PMKID checking for interoperability
with older hostapd versions.
The PMKID derivation has gotten messy due to the spec
updating/clarifying the hash size for the FT-8021X AKM. This
has led to hostapd updating the derivation which leaves older
hostapd versions using SHA1 and newer versions using SHA256.
To support this the checksum type is being fed to
handshake_state_get_pmkid so the caller can decide what sha to
use. In addition handshake_state_pmkid_matches is being added
which uses get_pmkid() but handles sorting out the hash type
automatically.
This lets preauthentication use handshake_state_get_pmkid where
there is the potential that a new PMKID is derived and eapol
can use handshake_state_pmkid_matches which only derives the
PMKID to compare against the peers.
The existing API was limited to SHA1 or SHA256 and assumed a key
length of 32 bytes. Since other AKMs plan to be added update
this to take the checksum/length directly for better flexibility.
This is consistent with the over-Air path, and makes it clear when
reading the logs if over-DS was used, if there was a response frame,
and if the frame failed to parse in some way.
Disable power save if the wiphy indicates its needed. Do this
before issuing GET_LINK so the netdev doesn't signal its up until
power save is disabled.
Certain drivers do not handle power save very well resulting in
missed frames, firmware crashes, or other bad behavior. Its easy
enough to disable power save via iw, iwconfig, etc but since IWD
removes and creates the interface on startup it blows away any
previous power save setting. The setting must be done *after* IWD
creates the interface which can be done, but needs to be via some
external daemon monitoring IWD's state. For minimal systems,
e.g. without NetworkManager, it becomes difficult and annoying to
persistently disable power save.
For this reason a new driver flag POWER_SAVE_DISABLE is being
added. This can then be referenced when creating the interfaces
and if set, disable power save.
The driver_infos list in wiphy.c is hard coded and, naturally,
not configurable from a user perspective. As drivers are updated
or added users may be left with their system being broken until the
driver is added, IWD released, and packaged.
This adds the ability to define driver flags inside main.conf under
the "DriverQuirks" group. Keys in this group correspond to values in
enum driver_flag and values are a list of glob matches for specific
drivers:
[DriverQuirks]
DefaultInterface=rtl81*,rtl87*,rtl88*,rtw_*,brcmfmac,bcmsdh_sdmmc
ForcePae=buggy_pae_*
Rather than keep a pointer to the driver_info entry copy the flags
into the wiphy object. This preps for supporting driver flags via
a configuration file, specifically allowing for entries that are a
subset of others. For example:
{ "rtl88*", DEFAULT_IF },
{ "rtl88x2bu", FORCE_PAE },
Before it was not possible to add entires like this since only the
last entry match would get set. Now DEFAULT_IF would get set to all
matches, and FORCE_PAE to only rtl88x2bu. This isn't especially
important for the static list since it could be modified to work
correctly, but will be needed when parsing flags from a
configuration file that may contain duplicates or subsets of the
static list.
If there was some problem during the FT authenticate stage
its nice to know more of what happened: whether the AP didn't
respond, rejected the attempt, or sent an invalid frame/IEs.
In some situations its convenient for the same work item to be
inserted (rescheduled) while its in progress. FT for example does
this now if a roam fails. The same ft_work item gets re-inserted
which, currently, is not safe to do since the item is modified
and removed once completed.
Fix this by introducing wiphy_radio_work_reschedule which is an
explicit API for re-inserting work items from within the do_work
callback.
The wiphy work logic was changed around slightly to remove the item
at the head of the queue prior to starting and note the ID going
into do_work. If do_work signaled done and ID changed we know it
was re-inserted and can skip the destroy logic and move onto the
next item. If the item is not done continue as normal but set the
priority to INT_MIN, as usual, to prevent other items from getting
to the head of the queue.
If IWD connects under bad RF conditions and netconfig takes
a while to complete (e.g. slow DHCP), the roam timeout
could fire before DHCP is done. Then, after the roam,
IWD would transition automatically to connected before
DHCP was finished. In theory DHCP could still complete after
this point but any process depending on IWD's connected
state would be uninformed and assume IP networking is up.
Fix this by stopping netconfig prior to a roam if IWD is not
in a connected state. Then, once the roam either failed or
succeeded, start netconfig again.
When acting as a configurator the enrollee can start on a different
channel than IWD is connected to. IWD will begin the auth process
on this channel but tell the enrollee to transition to the current
channel after the auth request. Since a configurator must be
connected (a requirement IWD enforces) we can assume a channel
transition will always be to the currently connected channel. This
allows us to simply cancel the offchannel request and wait for a
response (rather than start another offchannel).
Doing this improves the DPP performance and reduces the potential
for a lost frame during the channel transition.
This patch also addresses the comment that we should wait for the
auth request ACK before canceling the offchannel. Now a flag is
set and IWD will cancel the offchannel once the ACK is received.
If IWD gets a disconnect during FT the roaming state will be
cleared, as well as any ft_info's during ft_clear_authentications.
This includes canceling the offchannel operation which also
destroys any pending ft_info's if !info->parsed. This causes a
double free afterwards. In addition the l_queue_remove inside the
foreach callback is not a safe operation either.
To fix this don't remove the ft_info inside the offchannel
destroy callback. The info will get freed by ft_associate regardless
of the outcome (parsed or !parsed). This is also consistent with
how the onchannel logic works.
Log and crash backtrace below:
iwd[488]: src/station.c:station_try_next_transition() 5, target aa:46:8d:37:7c:87
iwd[488]: src/wiphy.c:wiphy_radio_work_insert() Inserting work item 16668
iwd[488]: src/wiphy.c:wiphy_radio_work_insert() Inserting work item 16669
iwd[488]: src/wiphy.c:wiphy_radio_work_done() Work item 16667 done
iwd[488]: src/wiphy.c:wiphy_radio_work_next() Starting work item 16668
iwd[488]: src/netdev.c:netdev_mlme_notify() MLME notification Remain on Channel(55)
iwd[488]: src/netdev.c:netdev_mlme_notify() MLME notification Del Station(20)
iwd[488]: src/netdev.c:netdev_link_notify() event 16 on ifindex 5
iwd[488]: src/netdev.c:netdev_mlme_notify() MLME notification Deauthenticate(39)
iwd[488]: src/netdev.c:netdev_deauthenticate_event()
iwd[488]: src/netdev.c:netdev_mlme_notify() MLME notification Disconnect(48)
iwd[488]: src/netdev.c:netdev_disconnect_event()
iwd[488]: Received Deauthentication event, reason: 6, from_ap: true
iwd[488]: src/station.c:station_disconnect_event() 5
iwd[488]: src/station.c:station_disassociated() 5
iwd[488]: src/station.c:station_reset_connection_state() 5
iwd[488]: src/station.c:station_roam_state_clear() 5
iwd[488]: double free or corruption (fasttop)
5 0x0000555b3dbf44a4 in ft_info_destroy ()
6 0x0000555b3dbf45b3 in remove_ifindex ()
7 0x0000555b3dc4653c in l_queue_foreach_remove ()
8 0x0000555b3dbd0dd1 in station_reset_connection_state ()
9 0x0000555b3dbd37e5 in station_disassociated ()
10 0x0000555b3dbc8bb8 in netdev_mlme_notify ()
11 0x0000555b3dc4e80b in received_data ()
12 0x0000555b3dc4b430 in io_callback ()
13 0x0000555b3dc4a5ed in l_main_iterate ()
14 0x0000555b3dc4a6bc in l_main_run ()
15 0x0000555b3dc4a8e0 in l_main_run_with_signal ()
16 0x0000555b3dbbe888 in main ()
Hostapd commit bc36991791 now properly sets the secure bit on
message 1/4. This was addressed in an earlier IWD commit but
neglected to allow for backwards compatibility. The check is
fatal which now breaks earlier hostapd version (older than 2.10).
Instead warn on this condition rather than reject the rekey.
Fixes: 7fad6590bd ("eapol: allow 'secure' to be set on rekeys")
The HT40+/- flags were reversed when checking against the 802.11
behavior flags.
HT40+ means the secondary channel is above (+) the primary channel
therefore corresponds to the PRIMARY_CHANNEL_LOWER behavior. And
the opposite for HT40-.
Reported-By: Alagu Sankar <alagusankar@gmail.com>
Use a more appropriate printf conversion string in order to avoid
unnecessary implicit conversion which can lead to a buffer overflow.
Reasons similar to commit:
98b758f893 ("knownnetworks: fix printing SSID in hex")
In the case that the FT target is on the same channel as we're currently
operating on, use ft_authenticate_onchannel instead of ft_authenticate.
Going offchannel in this case can confuse some drivers.
Currently when we try FT-over-Air, the Authenticate frame is always
sent via offchannel infrastructure We request the driver to go
offchannel, then send the Authenticate frame. This works fine as long
as the target AP is on a different channel. On some networks some (or
all) APs might actually be located on the same channel. In this case
going offchannel will result in some drivers not actually sending the
Authenticate frame until after the offchannel operation completes.
Work around this by introducing a new ft_authenticate variant that will
not request an offchannel operation first.
Force conversion to unsigned char before printing to avoid sign
extension when printing SSID in hex. For example, if there are CJK
characters in SSID, it will generate a very long string like
/net/connman/iwd/ffffffe8ffffffaeffffffa1.
If a very long ssid was used (e.g. CJK characters in SSID), it might do
out of bounds write to static variable for lack of checking the position
before the last snprintf() call.
Seeing that some authenticators can't handle TLS session caching
properly, allow the EAP-TLS-based methods session caching support to be
disabled per-network using a method specific FastReauthentication setting.
Defaults to true.
With the previous commit, authentication should succeed at least every
other attempt. I'd also expect that EAP-TLS is not usually affected
because there's no phase2, unlike with EAP-PEAP/EAP-TTLS.
If we have a TLS session cached from this attempt or a previous
successful connection attempt but the overall EAP method fails, forget
the session to improve the chances that authentication succeeds on the
next attempt considering that some authenticators strangely allow
resumption but can't handle it all the way to EAP method success.
Logically the session resumption in the TLS layers on the server should
be transparent to the EAP layers so I guess those may be failed
attempts to further optimise phase 2 when the server thinks it can
already trust the client.
The extra IE length for the WMM IE was being set to 26 which is
the HT IE length, not WMM. Fix this and use the proper size for
the WMM IE of 50 bytes.
This shouldn't have caused any problems prior as the tail length
is always allocated with 256 or 512 extra bytes of headroom.
Since channels numbers are used as indexes into the array, and given
that channel numbers start at '1' instead of 0, make sure to allocate a
buffer large enough to not overflow when the max channel number for a
given band is accessed.
src/manager.c:manager_wiphy_dump_callback() New wiphy phy1 added (1)
==22290== Invalid write of size 2
==22290== at 0x4624B2: nl80211_parse_supported_frequencies (nl80211util.c:570)
==22290== by 0x417CA5: parse_supported_bands (wiphy.c:1636)
==22290== by 0x418594: wiphy_parse_attributes (wiphy.c:1805)
==22290== by 0x418E20: wiphy_update_from_genl (wiphy.c:1991)
==22290== by 0x464589: manager_wiphy_dump_callback (manager.c:564)
==22290== by 0x4CBDDA: process_unicast (genl.c:944)
==22290== by 0x4CC19C: received_data (genl.c:1056)
==22290== by 0x4C7140: io_callback (io.c:120)
==22290== by 0x4C5A97: l_main_iterate (main.c:476)
==22290== by 0x4C5BDC: l_main_run (main.c:523)
==22290== by 0x4C5F0F: l_main_run_with_signal (main.c:645)
==22290== by 0x40503B: main (main.c:600)
==22290== Address 0x4aa76ec is 0 bytes after a block of size 28 alloc'd
==22290== at 0x48417B5: malloc (vg_replace_malloc.c:393)
==22290== by 0x4BC4D1: l_malloc (util.c:62)
==22290== by 0x417BE4: parse_supported_bands (wiphy.c:1619)
==22290== by 0x418594: wiphy_parse_attributes (wiphy.c:1805)
==22290== by 0x418E20: wiphy_update_from_genl (wiphy.c:1991)
==22290== by 0x464589: manager_wiphy_dump_callback (manager.c:564)
==22290== by 0x4CBDDA: process_unicast (genl.c:944)
==22290== by 0x4CC19C: received_data (genl.c:1056)
==22290== by 0x4C7140: io_callback (io.c:120)
==22290== by 0x4C5A97: l_main_iterate (main.c:476)
==22290== by 0x4C5BDC: l_main_run (main.c:523)
==22290== by 0x4C5F0F: l_main_run_with_signal (main.c:645)
==22290==
This adds support for rekeys to AP mode. A single timer is used and
reset to the next station needing a rekey. A default rekey timer of
600 seconds is used unless the profile sets a timeout.
The only changes required was to set the secure bit for message 1,
reset the frame retry counter, and change the 2/4 verifier to use
the rekey flag rather than ptk_complete. This is because we must
set ptk_complete false in order to detect retransmissions of the
4/4 frame.
Initiating a rekey can now be done by simply calling eapol_start().
If IWD ends up dumping wiphy's twice (because of NEW_WIPHY event
soon after initial dump) it will also try and dump interfaces
twice leading to multiple DEL_INTERFACE calls. The second attempt
will fail with -ENODEV (since the interface was already deleted).
Just silently fail with this case and let the other DEL_INTERFACE
path handle the re-creation.
With really badly timed events a wiphy can be registered twice. This
happens when IWD starts and requests a wiphy dump. Immediately after
a NEW_WIPHY event comes in (presumably when the driver loads) which
starts another dump. The NEW_WIPHY event can't simply be ignored
since it could be a hotplug (e.g. USB card) so to fix this we can
instead just prevent it from being registered.
This does mean both dumps will happen but the information will just
be added to the same wiphy object.
Past commits should address any potential problems of the timer
firing during FT, but its still good practice to cancel the timer
once it is no longer needed, i.e. once FT has started.
If station has already started FT ensure station_cannot_roam takes
that into account. Since the state has not yet changed it must also
check if the FT work ID is set.
Under the following conditions IWD can accidentally trigger a second
roam scan while one is already in progress:
- A low RSSI condition is met. This starts the roam rearm timer.
- A packet loss condition is met, which triggers a roam scan.
- The roam rearm timer fires and starts another roam scan while
also overwriting the first roam scan ID.
- Then, if IWD gets disconnected the overwritten roam scan gets
canceled, and the roam state is cleared which NULL's
station->connected_network.
- The initial roam scan results then come in with the assumption
that IWD is still connected which results in a crash trying to
reference station->connected_network.
This can be fixed by adding a station_cannot_roam check in the rearm
timer. If IWD is already doing a roam scan station->preparing_roam
should be set which will cause it to return true and stop any further
action.
Aborting (signal 11) [/usr/libexec/iwd]
iwd[426]: ++++++++ backtrace ++++++++
iwd[426]: #0 0x7f858d7b2090 in /lib/x86_64-linux-gnu/libc.so.6
iwd[426]: #1 0x443df7 in network_get_security() at ome/locus/workspace/iwd/src/network.c:287
iwd[426]: #2 0x421fbb in station_roam_scan_notify() at ome/locus/workspace/iwd/src/station.c:2516
iwd[426]: #3 0x43ebc1 in scan_finished() at ome/locus/workspace/iwd/src/scan.c:1861
iwd[426]: #4 0x43ecf2 in get_scan_done() at ome/locus/workspace/iwd/src/scan.c:1891
iwd[426]: #5 0x4cbfe9 in destroy_request() at ome/locus/workspace/iwd/ell/genl.c:676
iwd[426]: #6 0x4cc98b in process_unicast() at ome/locus/workspace/iwd/ell/genl.c:954
iwd[426]: #7 0x4ccd28 in received_data() at ome/locus/workspace/iwd/ell/genl.c:1052
iwd[426]: #8 0x4c79c9 in io_callback() at ome/locus/workspace/iwd/ell/io.c:120
iwd[426]: #9 0x4c62e3 in l_main_iterate() at ome/locus/workspace/iwd/ell/main.c:476
iwd[426]: #10 0x4c6426 in l_main_run() at ome/locus/workspace/iwd/ell/main.c:519
iwd[426]: #11 0x4c6752 in l_main_run_with_signal() at ome/locus/workspace/iwd/ell/main.c:645
iwd[426]: #12 0x405987 in main() at ome/locus/workspace/iwd/src/main.c:600
iwd[426]: #13 0x7f858d793083 in /lib/x86_64-linux-gnu/libc.so.6
iwd[426]: +++++++++++++++++++++++++++
If the authenticator has already set an snonce then the packet must
be a retransmit. Handle this by sending 3/4 again but making sure
to not reset the frame counter.
Old wpa_supplicant versions do not set the secure bit on 2/4 during
rekeys which causes IWD to reject the message and eventually time out.
Modern versions do set it correctly but even Android 13 (Pixel 5a)
still uses an ancient version of wpa_supplicant which does not set the
bit.
Relax this check and instead just print a warning but allow the message
to be processed.
In try_handshake_complete() we return early if all the keys had
been installed before (initial associations). For rekeys we can
now emit the REKEY_COMPLETE event which lets AP mode reset the
rekey timer for that station.
When the TK is installed the 'ptk_installed' flag was never set to
zero. For initial associations this was fine (already zero) but for
rekeys the flag needs to be unset so try_handshake_complete knows
if the key was installed. This is consistent with how gtk/igtk keys
work as well.
Rekeys for station mode don't need to know when complete since
there is nothing to do once done. AP mode on the other hand needs
to know if the rekey was successful in order to reset/set the next
rekey timer.
The second handshake message was hard coded with the secure bit as
zero but for rekeys the secure bit should be set to 1. Fix this by
changing the 2/4 builder to take a boolean which will set the bit
properly.
It should be noted that hostapd doesn't check this bit so EAPoL
worked just fine, but IWD's checks are more strict.
The PEAP RFC wants implementations to enforce that Phase2 methods have
been successfully completed prior to accepting a successful result TLV.
However, when TLS session resumption is used, some servers will skip
phase2 methods entirely and simply send a Result TLV with a success
code. This results in iwd (erroneously) rejecting the authentication
attempt.
Fix this by marking phase2 method as successful if session resumption is
being used.
This adds a builder which sets the country IE in probes/beacons.
The IE will use the 'single subband triplet sequence' meaning
dot11OperatingClassesRequired is false. This is much easier to
build and doesn't require knowing an operating class.
The IE itself is variable in length and potentially could grow
large if the hardware has a weird configuration (many different
power levels or segmentation in supported channels) so the
overall builder was changed to take the length of the buffer and
warnings will be printed if any space issues are encountered.
IWD's channel/frequency conversions use simple math to convert and
have very minimal checks to ensure the input is valid. This can
lead to some channels/frequencies being calculated which are not
in IWD's E-4 table, specifically in the 5GHz band.
This is especially noticable using mac80211_hwsim which includes
some obscure high 5ghz frequencies which are not part of the 802.11
spec.
To fix this calculate the frequency or channel then iterate E-4
operating classes to check that the value actually matches a class.
If supported this will include the HT capabilities and HT
operations elements in beacons/probes. Some shortcuts were taken
here since not all the information is currently parsed from the
hardware. Namely the HT operation element does not include the
basic MCS set. Still, this will at least show stations that the
AP is capable of more than just basic rates.
The builders themselves are structured similar to the basic rates
builder where they build only the contents and return the length.
The caller must set the type/length manually. This is to support
the two use cases of using with an IE builder vs direct pointer.
To include HT support a chandef needs to be created for whatever
frequency is being used. This allows IWD to provide a secondary
channel to the kernel in the case of 40MHz operation. Now the AP
will generate a chandef when starting based on the channel set
in the user profile (or default).
If HT is not supported the chandef width is set to 20MHz no-HT,
otherwise band_freq_to_ht_chandef is used.
The WMM parameter IE is expected by the linux kernel for any AP
supporting HT/VHT etc. IWD won't actually use WMM and its not
clear exactly why the kernel uses this restriction, but regardless
it must be included to support HT.
For AP mode its convenient for IWD to choose an appropriate
channel definition rather than require the user provide very
low level parameters such as channel width, center1 frequency
etc. For now only HT is supported as VHT/HE etc. require
additional secondary channel frequencies.
The HT API tries to find an operating class using 40Mhz which
complies with any hardware restrictions. If an operating class is
found that is supported/not restricted it is marked as 'best' until
a better one is found. In this case 'better' is a larger channel
width. Since this is HT only 20mhz and 40mhz widths are checked.
This adds some additional parsing to obtain the AMPDU parameter
byte as well as wiphy_get_ht_capabilities() which returns the
complete IE (combining the 3 separate kernel attributes).
The supported rates IE was being built in two places. This makes that
code common. Unfortunately it needs to support both an ie builder
and using a pointer directly which is why it only builds the contents
of the IE and the caller must set the type/length.
Move the l_netconfig_set_route_priority() and
l_netconfig_set_optimistic_dad_enabled() calls from netconfig_new, which
is called once for the l_netconfig object's lifetime, to
netconfig_load_settings, which is called before every connection attempt.
This is needed because we clean up the l_netconfig configuration by calling
l_netconfig_reset_config() at different points in connection setup and
teardown so we'd reset the route priority that we've set in netconfig_new,
back to 0 and never reload it.
The disabled_freqs list is being removed and replaced with a new
list in the band object. This completely removes the need for
the pending_freqs list as well since any regdom related dumps
can just overwrite the existing frequency list.