Its useful being able to refer to the network Name/SSID once
an AP is started. For example opening an iwctl session with an
already started AP provides no way of obtaining the SSID.
In some cases the AP can send a deauthenticate frame right after
accepting our authentication. In this case the kernel never properly
sends a CMD_CONNECT event with a failure, even though CMD_COONNECT was
used to initiate the connection. Try to work around that by detecting
that a Deauthenticate event arrives prior to any Associte or Connect
events and handle this case as a connect failure.
Now that ConnectHiddenNetwork can be invoked while we're connected, set
the mac randomization hint parameter properly. The kernel will reject
requests if randomization is enabled while we're connected to a network.
If we forget a hidden network, then make sure to remove it from the
network list completely. Otherwise it would be possible to still
issue a Network.Connect to that particular object, but the fact that the
network is hidden would be lost.
==17639== 72 (16 direct, 56 indirect) bytes in 1 blocks are definitely
lost in loss record 3 of 3
==17639== at 0x4C2F0CF: malloc (vg_replace_malloc.c:299)
==17639== by 0x4670AD: l_malloc (util.c:61)
==17639== by 0x4215AA: scan_freq_set_new (scan.c:1906)
==17639== by 0x412A9C: parse_neighbor_report (station.c:1910)
==17639== by 0x407335: netdev_neighbor_report_frame_event
(netdev.c:3522)
==17639== by 0x44BBE6: frame_watch_unicast_notify (frame-xchg.c:233)
==17639== by 0x470C04: dispatch_unicast_watches (genl.c:961)
==17639== by 0x470C04: process_unicast (genl.c:980)
==17639== by 0x470C04: received_data (genl.c:1101)
==17639== by 0x46D9DB: io_callback (io.c:118)
==17639== by 0x46CC0C: l_main_iterate (main.c:477)
==17639== by 0x46CCDB: l_main_run (main.c:524)
==17639== by 0x46CF01: l_main_run_with_signal (main.c:656)
==17639== by 0x403EDE: main (main.c:490)
In the case that ConnectHiddenNetwork scans successfully, but fails for
some other reason, the network object is left in the scan results until
it expires. This will prevent subsequent attempts to use
ConnectHiddenNetwork with a .NotHidden error. Fix that by checking
whether a found network is hidden, and if so, allow the request to
proceed.
Rework the logic slightly so that this function returns an error message
on error and NULL on success, just like other D-Bus method
implementations. This also simplifies the code slightly.
We used to not allow to connect to a different network while already
connected. One had to disconnect first. This also applied to
ConnectHiddenNetwork calls.
This restriction can be dropped now. station will intelligently
disconnect from the current AP when a station_connect_network() is
issued.
If the disconnect fails and station_disconnect_onconnect_cb is called
with an error, we reply to the original message accordingly.
Unfortunately pending_connect is not unrefed or cleared in this case.
Fix that.
Fixes: d0ee923dda ("station: Disconnect, if needed, on a new connection attempt")
An invalid known_network.freq file containing several UUID
groups which have the same 'name' key results in memory leaks
in IWD. This is because the file is loaded and the group's
are iterated without detecting duplicates. This leads to the
same network_info's known_frequencies being set/overridden
multiple times.
To fix this we just check if the network_info already has a
UUID set. If so remove the stale entry.
There may be other old, invalid, or stale entries from previous
versions of IWD, or a user misconfiguring the file. These will
now also be removed during load.
netdev_shutdown calls queue_destroy on the netdev_list, which in turn
calls netdev_free. netdev_free invokes the watches to notify them about
the netdev being removed. Those clients, or anything downstream can
still invoke netdev_find. Unfortunately queue_destroy is not re-entrant
safe, so netdev_find might return stale data. Fix that by using
l_queue_peek_head / l_queue_pop_head instead.
src/station.c:station_enter_state() Old State: connecting, new state:
connected
^CTerminate
src/netdev.c:netdev_free() Freeing netdev wlan1[6]
src/device.c:device_free()
Removing scan context for wdev 100000001
src/scan.c:scan_context_free() sc: 0x4ae9ca0
src/netdev.c:netdev_free() Freeing netdev wlan0[48]
src/device.c:device_free()
src/station.c:station_free()
src/netconfig.c:netconfig_destroy()
==103174== Invalid read of size 8
==103174== at 0x467AA9: l_queue_find (queue.c:346)
==103174== by 0x43ACFF: netconfig_reset (netconfig.c:1027)
==103174== by 0x43AFFC: netconfig_destroy (netconfig.c:1123)
==103174== by 0x414379: station_free (station.c:3369)
==103174== by 0x414379: station_destroy_interface (station.c:3466)
==103174== by 0x47C80C: interface_instance_free (dbus-service.c:510)
==103174== by 0x47C80C: _dbus_object_tree_remove_interface
(dbus-service.c:1694)
==103174== by 0x47C99C: _dbus_object_tree_object_destroy
(dbus-service.c:795)
==103174== by 0x409A87: netdev_free (netdev.c:770)
==103174== by 0x4677AE: l_queue_clear (queue.c:107)
==103174== by 0x4677F8: l_queue_destroy (queue.c:82)
==103174== by 0x40CDC1: netdev_shutdown (netdev.c:5089)
==103174== by 0x404736: iwd_shutdown (main.c:78)
==103174== by 0x404736: iwd_shutdown (main.c:65)
==103174== by 0x46BD61: handle_callback (signal.c:78)
==103174== by 0x46BD61: signalfd_read_cb (signal.c:104)
In the case of module_init failing due to a module that comes after
netdev, the netdev module doesn't clean up netdev_list properly.
==6254== 24 bytes in 1 blocks are still reachable in loss record 1 of 1
==6254== at 0x483777F: malloc (in
/usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==6254== by 0x4675ED: l_malloc (util.c:61)
==6254== by 0x46909D: l_queue_new (queue.c:63)
==6254== by 0x406AE4: netdev_init (netdev.c:5038)
==6254== by 0x44A7B3: iwd_modules_init (module.c:152)
==6254== by 0x404713: nl80211_appeared (main.c:171)
==6254== by 0x4713DE: process_unicast (genl.c:993)
==6254== by 0x4713DE: received_data (genl.c:1101)
==6254== by 0x46E00B: io_callback (io.c:118)
==6254== by 0x46D20C: l_main_iterate (main.c:477)
==6254== by 0x46D2DB: l_main_run (main.c:524)
==6254== by 0x46D2DB: l_main_run (main.c:506)
==6254== by 0x46D502: l_main_run_with_signal (main.c:656)
==6254== by 0x403EDB: main (main.c:490)
Rather than the previous hack which disabled group traffic it
was found that the GTK RSC could be manually set to zero which
allows group traffic. This appears to fix AP mode on brcmfmac
along with the previous fixes. This is not documented in
nl80211, but appears to work with this driver.
This is how a fullmac card tells userspace that a station has
left. This fixes the issue where the same client cannot re-connect
to the same AP multiple times. ap_new_station was renamed to
ap_handle_new_station for consistency.
Some fullmac cards were found to be buggy with getting the GTK
where it returns a BIP key for the GTK index, even after creating
a GTK with NEW_KEY explicitly. In an effort to get these cards
semi-working we can treat this just as a warning and continue with
the handshake without a GTK set which disables group traffic. A
warning is printed in this case so the user is not completely in
the dark.
Fix an issue with the recent changes to signal monitoring from commit
f456501b ("station: retry roaming unless notified of a high RSSI"):
1. driver sends NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW
2. netdev->cur_rssi_low changes from FALSE to TRUE
3. netdev sends NETDEV_EVENT_RSSI_THRESHOLD_LOW to station
4. on roam reassociation, cur_rssi_low is reset to FALSE
5. station still assumes RSSI is low, periodically roams
until netdev sends NETDEV_EVENT_RSSI_THRESHOLD_HIGH
6. driver sends NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH
7. netdev->cur_rssi_low doesn't change (still FALSE)
8. netdev never sends NETDEV_EVENT_RSSI_THRESHOLD_HIGH
9. station remains stuck in an infinite roaming loop
The commit in question introduced the logic in (5). Previously the
assumption in station was - like in netdev - that if the signal was
still low, the driver would send a duplicate LOW event after
reassociation. This change makes netdev follow the same new logic as
station, i.e. assume the same signal state (LOW/HIGH) until told
otherwise by the driver.
Since fullmac cards handle auth/assoc in firmware IWD must
react differently while in AP mode just as it does in station.
For fullmac cards a NEW_STATION event is emitted post association
and from here the 4-way handshake can begin. In this NEW_STATION
handler a new sta_state is created and the needed members are
set in order to inject us back into the normal code execution
for softmac post association (i.e. creating group keys and
starting the 4-way handshake). From here everything works the
same as softmac.
At some point the non-interactive client tests began failing.
This was due to a bug in station where it would transition from
'connected' to 'autoconnect' due to a failed scan request. This
happened because a quick scan got scheduled during an ongoing
scan, then a Connect() gets issued. The work queue treats the
Connect as a priority so it delays the quick scan until after the
connection succeeds. This results in a failed quick scan which
IWD does not expect to happen when in a 'connected' state. This
failed scan actually triggers a state transition which then
gets IWD into a strange state where its connected from the
kernel point of view but does not think it is:
src/station.c:station_connect_cb() 13, result: 0
src/station.c:station_enter_state() Old State: connecting, new state: connected
src/wiphy.c:wiphy_radio_work_done() Work item 6 done
src/wiphy.c:wiphy_radio_work_next() Starting work item 5
src/station.c:station_quick_scan_triggered() Quick scan trigger failed: -95
src/station.c:station_enter_state() Old State: connected, new state: autoconnect_full
To fix this IWD should simply cancel any pending quick scans
if/when a Connect() call comes in.
Switch EAP-TLS-ClientCert and EAP-TLS-ClientKey to use
l_cert_load_container_file for file loading so that the file format is
autodetected. Add new setting EAP-TLS-ClientKeyBundle for loading both
the client certificate and private key from one file.
As requested move the client certificate and private key loading from
eap-tls-common.c to eap-tls.c. No man page change needed because those
two settings weren't documented in it in the first place.
This adds a new AccessPointDiagnostic interface. This interface
provides similar low level functionality as StationDiagnostic, but
for when IWD is in AP mode. This uses netdev_get_all_stations
which will dump all stations, parse, and return each station in
an individual callback. Once the dump is complete the destroy is
called and all data is packaged as an array of dictionaries.
AP mode will use the same structure for its diagnostic interface
and mostly the same dictionary keys. Apart from ConnectedBss and
Address being different, the remainder are the same so the
diagnostic_station_info to DBus dictionary conversion has been made
common so both station and AP can use it to build its diagnostic
dictionaries.
With AP now getting its own diagnostic interface it made sense
to move the netdev_station_info struct definition into its own
header which eventually can be accompanied by utilities in
diagnostic.c. These utilities can then be shared with AP and
station as needed.
systemd specifies a special passive target unit 'network-pre.target'
which may be pulled in by services that want to run before any network
interface is brought up or configured. Correspondingly, network
management services such as iwd and ead should specify
After=network-pre.target to ensure a proper ordering with respect to
this special target. For more information on network-pre.target, see
systemd.special(7).
Two examples to explain the rationale of this change:
1. On one of our embedded systems running iwd, a oneshot service is
run on startup to configure - among other things - the MAC address of
the wireless network interface based on some data in an EEPROM.
Following the systemd documentation, the oneshot service specifies:
Before=network-pre.target
Wants=network-pre.target
... to ensure that it is run before any network management software
starts. In practice, before this change, iwd was starting up and
connecting to an AP before the service had finished. iwd would then
get kicked off by the AP when the MAC address got changed. By
specifying After=network-pre.target, systemd will take care to avoid
this situation.
2. An administrator may wish to use network-pre.target to ensure
firewall rules are applied before any network management software is
started. This use-case is described in the systemd documentation[1].
Since iwd can be used for IP configuration, it should also respect
the After=network-pre.target convention.
Note that network-pre.target is a passive unit that is only pulled in if
another unit specifies e.g. Wants=network-pre.target. If no such unit
exists, this change will have no effect on the order in which systemd
starts iwd or ead.
[1] https://www.freedesktop.org/wiki/Software/systemd/NetworkTarget/
Following a successful roaming sequence, schedule another attempt unless
the driver has sent a high RSSI notification. This makes the behaviour
analogous to a failed roaming attempt where we remained connected to the
same BSS.
This makes iwd compatible with wireless drivers which do not necessarily
send out a duplicate low RSSI notification upon reassociation. Without
this change, iwd risks getting indefinitely stuck to a BSS with low
signal strength, even though a better BSS might later become available.
In the case of a high RSSI notification, the minimum roam time will also
be reset to zero. This preserves the original behaviour in the case
where a high RSSI notification is processed after station_roamed().
Doing so also gives a chance for faster roaming action in the following
example scenario:
1. RSSI LOW
2. schedule roam in 5 seconds
(5 seconds pass)
3. try roaming
4. roaming fails, same BSS
5. schedule roam in 60 seconds
(20 seconds pass)
6. RSSI HIGH
7. cancel scheduled roam
(20 seconds pass)
8. RSSI LOW
9. schedule roam in 5 seconds or 20 seconds?
By resetting the minimum roam time, we can avoid waiting 20 seconds when
the station may have moved considerably. And since the high/low RSSI
notifications are configured with a hysteresis, we should still be
protected against too frequent spurious roaming attempts.
This is a nl80211 dump version of netdev_get_station aimed at
AP mode. This will dump all stations, parse into
netdev_station_info structs, and call the callback for each
individual station found. Once the dump is completed the destroy
callback is called.
This adds a generalized API for GET_STATION. This API handles
calling and parsing the results into a new structure,
netdev_station_info. This results structure will hold any
data needed by consumers of netdev_get_station. A helper API
(netdev_get_current_station) was added as a convenience which
automatically passes handshake->aa as the MAC.
For now only the RSSI is parsed as this is already being
done for RSSI polling/events. Looking further more info will
be added such as rx/tx rates and estimated throughput.
Arrays of dictionaries are quite common, and for basic
types this API makes things much more convenient by
putting all the enter/append/leave calls in one place.