In very large network deployments there could be a vast amount of APs
which could create a large known frequency list after some time once
all the APs are seen in scan results. This then increases the quick
scan time significantly, in the very worst case (but unlikely) just
as long as a full scan.
To help with this support in knownnetworks was added to limit the
number of frequencies per network. Station will now only get 5
recent frequencies per network making the maximum frequencies 25
in the worst case (~2.5s scan).
The magic values are now defines, and the recent roam frequencies
was also changed to use this define as well.
If a known network is modified on disk known networks does not have
any way of notifying other modules. This will be needed to support a
corner case in DPP if a profile exists but is overwritten after DPP
configuration. Add this event to known networks and handle it in
network.c (though nothing needs to be done in that case).
This indication can come in via EAPoL message 3 or during
FILS Association. It carries information as to whether certain
transition mode options should be disabled. See WPA3 Specification,
version 3 for more details.
Some network settings keys are set / parsed in multiple files. Add a
utility to parse all common network configuration settings in one place.
Also add some defines to make sure settings are always saved in the
expected group/key.
We track mtime as the 'LastConnectedTime' of the network, and also sort
the known network list according to the last connected time.
Unfortunately we were never reacting to ATTRIB changes, and so were
never updating the network_info->connected_time whenever a network was
connected to.
Rework the logic to address this. This also fixes a small bug where the
connected_time was not set properly prior to removal / re-insertion of
the network_info.
Gets a newly created scan_freq_set containing the most recent
frequencies for the network. The currently connected BSS frequency
(passed as a parameters) will not be included in the set.
The UUID was being generated every time we synced which is wasteful.
Instead we can track the UUID inside network_info and only generate
it once when needed.
Two new network_info APIs were added:
network_info_set_uuid
network_info_get_uuid
The setter is used when the frequency file is loaded. If a valid UUID
is found in the frequency file this UUID is set and used.
network_info_get_uuid will not just get the UUID, but actually generate
it if one has not been set yet. This will allow other modules to
get/generate the UUID if one has no been loaded from the frequency
file.
This API will sync the known frequencies of a network_info object
to disk. This will allow network to sync known frequencies as
known networks are added, rather that when IWD closes.
Since this will result in more frequent syncing that before, the
known_freqs settings pointer was moved globally in knownnetworks.c
as to only parse the file one time rather than on every sync.
The HS20 module had its own getter for returning the matched roaming
consortium. Since we already have the network_info op for matching
we might as well return the matched RC rather than just a bool. This
allows the RC to be included in (Re)Association without the need for
a specific getter.
known_network_update was being used to both update and create known
networks as they appeared on the file system. Hotspot needs updating
capabilities so known_network_update was exposed and updated with
one major difference; it no longer can be used to create new known
networks. For creation, a new API was added (known_network_new)
which will create and add to the queue.
Rather than using timespec directly, ELL has a convenient API
to get the elapsed microseconds as a uint64_t. This can then
be used with the other l_time_ APIs for comparison.
This patch removes timespec from network_info and updates
to use l_time_* API's for sorting.
These operations will allow the hotspot module to implement
matching HESSID, Roaming Consortium, and NAI realms. This offloads
the matching details into the hotspot module.
These two API's have been added to allow hotspot to add its
own networks to the known network list. This will allow any
added networks to behave exactly like they do now, including
all the dbus and watchlist functionality.
The known network APIs all revolved around the ssid/security matching
to do any operations on the provisioning file. In the near future
hotspot provisioning files (managed by hotspot.c) will be incorporated
into the known network list. Since these hotspot files do not use the
ssid as the file name hotspot.c will need other ways of matching.
This patch adds network_info_ops to the network object. This ops
structure will hold function pointers which operate on network_info
rather than ssid/security. This will allow hotspot and known networks
to both register their own operation routines.
For now open, touch, sync, remove, free, and get_path were added.
Wrappers were added for accessing these operations outside of
knownnetworks.c.
Isolate the known_frequency queue management to a function and place
that function in knownnetworks.c where it now belongs. Since we no
longer have network_info objects for unknown networks, only frequencies
for known networks are tracked
network_find_rank_index was used to find the offset of the selected
network_info among known networks so as to compute a modifier based on
the rankmod table. Instead of using known_networks_foreach for this,
moove it to knownnetworks.c where it can be coded and optimized
separately.
For now provide a simple for loop implementation.
Each known network (previously connected) will have a set
of known frequencies associated with it, e.g. a set of
frequencies from all BSSs observed. The list of known
frequencies is sorted with the most recently observed
frequency in the head.
Until now network.c managed the list of network_info structs including
for known networks and networks that are seen in at least one device's
scan results, with the is_known flag to distinguish known networks.
Each time the list was processed though the code was either interested
in one subset of networks or the other. Split the list into a Known
Networks list and the list of other networks seen in scans. Move all
code related to Known Networks to knownnetworks.c, this simplifies
network.h. It also gets rid of network_info_get_known which actually
returned the list of all network_infos (not just for known networks),
which logically should have been private to network.c. Update device.c
and scan.c to use functions specific to Known Networks instead of
filtering the lists by the is_known flag.
This will also allow knownnetworks.c to export DBus objects and/or
properties for the Known Networks information because it now knows when
Known Networks are added, removed or modified by IWD.
knownnetworks.c/.h implements the KnownNetworks interface and loads the
known networks from storage on startup. The list of all the networks
including information on whether a network is known is managed in
network.c to avoid having two separate lists of network_info structures
and keeping them in sync. That turns out to be difficult because the
network.c list is sorted by connected_time and connected_time changes
can be triggered in both network.c or knownnetworks.c. Both can also
trigger a network_info to be removed completely.