Before hostapd was initialized using the wiphy_map which has now
gone away. Instead we have a global config module which contains
a single 'ctx'. This is the centeral store for all test information.
This patch converts hostapd.py to lookup instances by already
initialized Hostapd object. The interface parameter was removed
since all tests have been converted to use config= instead.
In addition HostapdCLI was changed to allow no parameters if there
is only a single hostapd instance.
This patch completely re-writes test-runner in Python. This was done
because the existing C test-runner had some clunky work arounds and
maintaining or adding new features was starting to become a huge pain.
There were a few aspects of test-runner which continually had to
be dealt with when adding any new functionality:
* Argument parsing: Adding new arguments to test-runner wasn't so
bad, but if you wanted those arguments passed into the VM it
became a huge pain. Arguments needed to be parsed, then re-formatted
into the qemu command line, then re-parsed in a special order
(backwards) once in the VM. The burden for adding new arguments was
quite high so it was avoided (at least by me) at all costs.
* The separation between C and Python: The tests are all written in
python, but the executables, radios, and interfaces were all created
from C. The way we solved this was by encoding the require info as
environment variables, then parsing those from Python. It worked,
but it was, again, a huge pain.
* Process management: It started with all processes being launched
from C, but eventually tests required the ability to start IWD, or
kill hostapd ungracefully in order to test certain functionality.
Since the processes were tracked in C, Python had no way of
signalling that it killed a process and when it started one C had
no idea. This was mitigated (basically by killall), but it was
no where close to an elegant solution.
Re-writing test-runner in python solves all these problems and will
be much easier to maintain.
* Argument parsing: Now all arguments are forwarded automatically
to the VM. The ArgParse library takes care of parsing and each
argument is stored in a dictionary.
* Separation between C and Python: No more C, so no more separation.
* Process management: Python will now manage all processes. This
allows a test to kill, restart, or start a new process and not
have to remember the PID or to kill it after the test.
There are a few more important aspects of the python implementation
that should now be considered when writing new tests:
* The IWD constructor now has different default arugments. IWD
will always be started unless specified and the configuration
directory will always be /tmp
* Any non *.py file in the test directory will be copied to /tmp.
This avoids the need for 'tmpfs_extra_stuff' completely.
* ctrl_interface will automatically be appended to every hostapd
config. There is no need to include this in a config file from
now on.
* Test cleanup is extremely important. All tests get run in the
same interpreter now and the tests themselves are actually loaded
as python modules. This means e.g. if you somehow kept a reference
to IWD() any subsequent tests would not start since IWD is still
running.
* For debugging, the test context can be printed which shows running
processes, radios, and interfaces.
Three non-native python modules were used: PrettyTable, colored, and
pyroute2
$ pip3 install prettytable
$ pip3 install termcolor
$ pip3 install pyroute2
The tests basically remained the same with a few minor changes.
The wiphy_map and in turn hostapd_map are no longer used. This
was already partially converted a long time ago when the 'config'
parameter was added to HostapdCLI. This patch fully converts all
autotests to use 'config' rather than looking up by interface.
Some test scripts were named 'test.py' which was fine before but
the new rewrite actually loads each python test as a module. The
name 'test' is too ambiguous and causes issues due to a native
python module with the same name. All of these files were
renamed to 'connection_test.py'.
Add the special case "DIRECT-" SSID, called the P2P Wildcard SSID, in
ap_probe_req_cb so as not to reject those Probe Requests on the basis of
ssid mismatch. I'd have preferred to keep all the P2P-specific bits in
p2p.c but in this case there's little point in adding a generic
config setting for SSID-matching quirks.
Prefix all the struct p2p_device members that are part of the connection
state with the "conn_" string for consistency. If we needed to support
multiple client connections, these members are the ones that would
probably land in a separate structure, without that prefix.
For WSC we should have been sending our probe requests from the same
address we're going to be doing EAP-WSC with the GO. Somehow I was able
to connect to most devices without that but other implementations seem
to use the Interface Address (the P2P-Client's MAC), not the Device
Address (P2P-Device's MAC). We could switch the order to first create
the new interface and scan from it is simpler to use the scan_context we
already have created on the device interface and set a different mac.
Check the conditions for PBC enrollee registration when we receive the
Association Request with WSC IE and indicate to the enrollee whether we
accept the association using a WSC IE in the Association Response.
After this, a NULL sta->assoc_rsne indicates that the station is not
establishing the RSNA and is a WSC enrollee.
Implement the caching of WSC probe requests -- when an Enrollee later
associates to start registration we need to have its Probe Request on
file. Also use this cache for PBC "Session Overlap" detection.
This adds the API for putting the AP in Push Button mode, which we'll
need to P2P GO side but may be useful on its own too. A WSC IE is added
to our beacons and probe responses indicating whether the PBC mode is
active.
On a new association or re-association, in addition to forgetting a
complete RSN Association, also stop the EAPoL SM to stop any ongoing
handshake.
Do this in a new function ap_stop_handshake that is now used in a few
places that had copies of the same few lines. I'll be adding some more
lines to this function for WSC support.
Reuse this flag on the authenticator side with a slightly different
meaning: when it's true we're forced to wait for the EAPoL-Start before
sending the first EAPoL-EAP frame to the supplicant, such as is required
in a WSC enrollee registration when the Association Request didn't have
a v2.0 WSC IE.
Add the wfa_build_authorized_macs function (wfa_ prefix following the
wfa_extract_ naming) and use it in wsc_build_probe_response. The logic
is changed slightly to treat the first 6-zeros address in the array as
the end of the array.
Setting 'match' false wouldn't do anything because it was already false.
If the frame is addressed to some other non-broadcast address ignore it
directly and exit ap_probe_req_cb.
To limit the number of ap_start parameters, group basic AP config
parameters in the ap_config struct that is passed as a pointer and owned
by the ap_state.
The intent was to read the UUID-E from the settings rather than generate
it from the enrollee's MAC because it needs to match the UUID-E from
enrolee's Probe Requests, fix this. The UUID-E supplied in the unit
test was being ignored but the test still passed because the supplied
UUID-E was generated the same way we generated it in eap-wsc.c.
When we're sending our probe response to the same peer that we're
currently connected or connecting to, use current WSC Configuration
Methods, UUID-E and WFD IE selected for this connection attempt, not the
ones we'd use when discovering peers or being discovered by peers.
In the case of the WFD IE, the "Available for WFD Session" flag is going
to differ between the two cases -- we may be unavailable for other peers
but we're still available for the peer we're trying to start the WFD
session with.
When we send our GO Negotiation Response, send the Configuration Method
selected for the current connection rather than the accepted methods mask
that we hold in dev->device_info.
When building the scan IEs for our provisioning scans, use the UUID-E
based on the Interface Address, not the Device Address, as that is what
wsc.c will be using to in the registration protocol.
Eventually we may have to base the UUID-E on the Device Address or
something else that is persistent, and pass the actual UUID-E to wsc.c,
as the Interface Address is randomly generated on every connect attempt.
IIRC the UUID-E is supposed to be persistent.
wsc_attr_builder_start_attr and wsc_attr_builder_free look at
builder->curlen to see whether the TLV's length needs to be updated to
include the previous attribute. If builder->curlen is 0
wsc_attr_builder_start_attr assumes there's no previous attribute and
starts writing at current builder->offset. If the previous attribute
length was 0 curlen would stay at 0 and that attribute would get
overwritten with the new one. To solve this add the 4 bytes of the T
and L to curlen as soon as a new attribute is started, and subtract
them when writing the L value. The alternative would be to set a flag
to say whether an attribute was started.
The spec explicitly allows 0-length attributes in section 12:
"The variable length string attributes, e.g., Device Name, are encoded
without null-termination, i.e., no 0x00 octets added to the end of the
value. If the string is empty, the attribute length is set to zero."
Add ability to populate search domains for resolvconf based systems.
Search domains are added using the 'search' directive and added using
the <ifname>.domain key into resolvconf.
Introduce a new resolvconf_invoke function that takes care of all the
details of invoking resolvconf and simplify the code a bit.
Introduce have_dns that tracks whether DNS servers were actually
provided. If no DNS info was provided, do not invoke resolvconf to
remove it.
Instead of interface index, resolvconf is now invoked with the printable
name of the interface and the dns entries are placed in the "dns"
protocol. This makes it a bit simpler to add additional info to
resolvconf instead of trying to generate a monolithic entry.
Resolve module does not currently track any state that has been set on
a per ifindex basis. This was okay while the set of information we
supported was quite small. However, with dhcpv6 support being prepared,
a more flexible framework is needed.
Change the resolve API to allocate and return an instance for a given
ifindex that has the ability to track information that was provided.
Found using lsan:
==29896==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 9 byte(s) in 1 object(s) allocated from:
#0 0x7fcd41e0c710 in __interceptor_malloc /var/tmp/portage/sys-devel/gcc-8.2.0-r6/work/gcc-8.2.0/libsanitizer/asan/asan_malloc_linux.cc:86
#1 0x606abd in l_malloc ell/util.c:62
#2 0x460230 in ie_tlv_vendor_ie_concat src/ie.c:140
#3 0x4605d1 in ie_tlv_extract_wfd_payload src/ie.c:216
#4 0x4a8773 in scan_parse_bss_information_elements src/scan.c:1105
#5 0x4a94a8 in scan_parse_attr_bss src/scan.c:1181
#6 0x4a99f8 in scan_parse_result src/scan.c:1238
#7 0x4abe4e in get_scan_callback src/scan.c:1451
#8 0x6442d9 in process_unicast ell/genl.c:979
#9 0x6453ff in received_data ell/genl.c:1087
#10 0x62e1a4 in io_callback ell/io.c:126
#11 0x628fca in l_main_iterate ell/main.c:473
#12 0x6294e8 in l_main_run ell/main.c:520
#13 0x629d8b in l_main_run_with_signal ell/main.c:642
#14 0x40681b in main src/main.c:505
#15 0x7fcd40a55bdd in __libc_start_main (/lib64/libc.so.6+0x21bdd)
When the client is interrupted in the middle of user input entry and the
input is masked, the terminal might be left in a weird state. Make sure
to reset the prompt if the agent is being cleaned up in the middle of an
operation.
This commit has all the changes to extend and generalise the current
eap-wsc.c code to handle both the Enrollee and Registrar side of the
protocol, reusing existing functions and structures.
Alongside the current EAP-WSC enrollee side support, add the initial
part of registrar side. In the same file, register a new method with
the name string of "WSC-R". In this patch only the load_settings
method is added. validate_identity and handle_response are added in
later patches.
Handle EAPoL-EAP frames using our eap.c methods in authenticator mode
same as we do on the supplicant side. The user (ap.c) will only need to
set a valid 8021x_settings in the handshake object, same as on the
supplicant side.
The goal is to add specifically EAP-WSC registrar side and it looks like
extending our EAP and EAPoL code to support both supplicant and
authenticator-side methods is simpler than adding just EAP-WSC as a
special case.
Since EAP-WSC always ends in an EAP failure, I haven't actually tested
the success path.
On the supplicant side eapol_register would only register the eapol_sm
on a given netdev to start receiving frames and an eapol_start call is
required for the state machine to start executing. On the authenticator
side we shouldn't have the "early frame" problem but there's no reason
for the semantics of the two methods to be different. Somehow we were
doing everything in eapol_register and not using eapol_start if
hs->authenticator was true, so bring this in line with the supplicant
side and require eapol_start to be called also from ap.c.