Tests which use a standalone RADIUS server may crash due to
the wiphy array not taking into account the 'radius_server'
key which is skipped during setup.
The goto was jumping to a label which freed the wiphy list which
had not yet been initialized. This also fixes another similar issue
if chdir fails (in this case tmpfs_extra_stuff would get freed
before being allocated).
This API was updated to take an extra boolean which will
automatically power up the device while changing the MAC
address. Since this is what IWD does anyways we can avoid
the need for an intermediate callback and go right into
netdev_initial_up_cb.
iwd would fail to connect using EAP-TLS when no CA certificate was
provided as it checked for successful loading of the CA certificate
instead of the client certificate when attempting to load the client
certificate.
Ensure that directory is created before its written to
This can cause a build race in a highly parallelised build where a directory is not yet created but
output file is being written using redirection e.g.
rst2man.py --strict --no-raw --no-generator --no-datestamp < ../git/monitor/iwmon.rst > monitor/iwmon.1
/bin/sh: monitor/iwmon.1: No such file or directory
make[1]: *** [Makefile:3544: monitor/iwmon.1] Error 1
Signed-off-by: Khem Raj <raj.khem@gmail.com>
The password for EAP-GTC is directly used in an EAP response. The
response buffer is created on the stack so an overly large password
could cause a stack overflow.
mac80211 drivers seem to send the disconnect event which is triggered by
CMD_DISCONNECT prior to the CMD_DISCONNECT response. However, some
drivers, namely brcmfmac, send the response first and then send the
disconnect event. This confused iwd when a connection was immediately
triggered after a disconnection (network switch operation).
Fix this by making sure that connected variable isn't set until the
connect event is actually processed, and ignore disconnect events which
come after CMD_DISCONNECT has alredy succeeded.
Do agent registration as part of agent manager proxy creation.
This ensures that the registration call is made only after the agent
manager’s interface becomes available on the bus.
Add the newly created proxy objects into the queue before the
interface specific initialization logic takes place. This way the new
proxy objects can be used within the initialization procedures.
For nl80211 sockets other than our main l_genl object use socket io
directly, to avoid creating many instances of l_genl. The only reason
we use multiple sockets is to work around an nl80211 design quirk that
requires closing the socket to unregister management frame watches.
Normally there should not be a need to create multiple sockets in a
program.
Add a little state machine and a related API, to simplify sending out a
frame, receiving the Ack / No-ack status and (if acked) waiting for a
response frame from the target device, one of a list of possible
frame prefixes. The nl80211 API for this makes it complicated
enough that this new API seems to be justified, on top of that there's a
quirk when using the brcmfmac driver where the nl80211 response
(containing the operation's cookie), the Tx Status event and the response
Frame event are received from nl80211 in reverse order (not seen with
other drivers so far), further complicating what should be a pretty
simple task.
Try to better deduplicate the frame watches. Until now we'd check if
we'd already registered a given frame body prefix with the kernel, or a
matching more general prefix (shorter). Now also try to check if we
have already have a watch with the same callback pointer and user_data
value, and:
* an identical or shorter (more general) prefix, in that case ignore
the new watch completely.
* a longer (more specific) prefix, in that case forget the existing
watch.
The use case for this is when we have a single callback for multiple
watches and multiple frame types, and inside that callback we're looking
at the frame body again and matching it to frame types. In that case
we don't want that function to be called multiple times for one frame
event.
In frame_watch_group_remove I forgot to actually match the group to be
removed by both wdev_id and group_id. group_ids are unique only in the
scope of one wdev.
I forgot to actually add new groups being created in
frame_watch_group_get to the watch_groups queue, meaning that we'd
re-create the group every time a new watch was added to the group.
Previously, the parsing of the OMs objects has been done in one pass,
therefore, the proxy object's dependencies may not have been parsed at the
time when they were looked up for the dependency assignments. Now, the
parsing of the OM objects is done in two passes: 1) Create proxy objects -
one per interface and path, 2) Populate the proxy objects with properties
and assign dependencies. Therefore, we are guaranteed to have the proxy
objects created by the time they are looked up for the dependency
assignments.
Processing the duplicated TLVs while connecting to a malicious AP may lead
to overflow of the response buffer. This patch ensures that the
duplicated TLVs are not parsed.
The pending wiphy state 'use_default' variable was not set early enough
in some circumstances resulting in weird behavior for blacklisted
drivers. Fix this by adding a manager_wiphy_dump_done callback which
will properly initialize the use_default value.
Fixes: c4b2f10483 ("manager: Handle missing NEW_WIPHY events")
brcmfmac does not allow the removal of the default / primary interface.
So there isn't much point in having iwd attempt this.
Another issue is that brcmfmac _does_ allow the deletion of non-default
interfaces. So starting iwd on a system with a station & ap interface
active can result in iwd attempting to delete all the interfaces. Given
the above, it succeeds in deleting the ap interface but not the station
one. In strange circumstances it might end up thinking that the ap
interface is the 'default' and trying to use it, whereas it was just
successfully removed.
==192== Conditional jump or move depends on uninitialised value(s)
==192== at 0x4531D3: l_queue_find (queue.c:346)
==192== by 0x42F1F8: manager_config_notify (manager.c:667)
==192== by 0x45A895: process_multicast (genl.c:970)
==192== by 0x45A895: received_data (genl.c:1037)
==192== by 0x4577B2: io_callback (io.c:126)
==192== by 0x456B0D: l_main_iterate (main.c:473)
==192== by 0x456BCB: l_main_run (main.c:520)
==192== by 0x456DDA: l_main_run_with_signal (main.c:642)
==192== by 0x4034B0: main (main.c:497)
The kernel emits NEW_WIPHY events whenever a new wiphy is registered.
Unfortunately these events are emitted under the 'legacy' semantics and
have a hard size limit of 4096 bytes. Unfortunately, it is possible for
a NEW_WIPHY message to exceed this limit (ath10k cards seem to be
affected in particular), which results in the kernel never sending these
messages out. This can lead to NEW_INTERFACE events being emitted with
a wiphy_id that had no corresponding NEW_WIPHY event emitted. Such a
sequence can confuse iwd's hardware detection logic, particularly during
hot-plug or system boot.
Fix this by re-dumping the wiphy if such a condition is detected. This
has some interaction with blacklisted wiphys, so the wiphy objects are
now always tracked and marked as blacklisted. Before, the blacklisted
wiphys were simply not added to the iwd list of tracked wiphys.
For the inner EAP methods that support generation of the key material
include it into imck generation. This allows to cryptographically
bind the inner method with the tunnel.
Windows Server 2008 - Network Policy Server (NPS) generates an invalid
Compound MAC for Cryptobinding TLV when is used within PEAPv0 due to
incorrect parsing of the message containing TLS Client Hello.
Setting L bit and including TLS Message Length field, even for the
packets that do not require fragmentation, corrects the issue. The
redundant TLS Message Length field in unfragmented packets doesn't
seem to affect the other server implementations.
Sometimes, at least with brcmfmac, the default interface apparently
takes a moment to get created after the NEW_WIPHY event. We didn't
really consider this case in the NEW_WIPHY handler and we've got a race
condition. It fixes the following bug for me:
https://bugs.archlinux.org/task/63912 -- tested by removing and
re-modprobing the brcmfmac module rather than rebooting.
To work around this wait for the NEW_INTERFACE event and then retry the
setup. We still do the initial attempt directly after NEW_WIPHY to
handle cases like wiphys with no default interfaces and pre-existing
wiphys.
We track mtime as the 'LastConnectedTime' of the network, and also sort
the known network list according to the last connected time.
Unfortunately we were never reacting to ATTRIB changes, and so were
never updating the network_info->connected_time whenever a network was
connected to.
Rework the logic to address this. This also fixes a small bug where the
connected_time was not set properly prior to removal / re-insertion of
the network_info.