The kernel allows a scan duration and duration mandatory flag to be
set in scan requests. RRM requests can contain these values so they
have been added to scan_parameters.
Scanning with drivers which do not support EXT_FEATURE_SET_SCAN_DWELL
will not include these values in scan requests.
For (Re)Association the HS20 indication element was passed exactly as
it was found in the scan results. The spec defines what bits can be
set and what cannot when this IE is used in (Re)Association. Instead
of assuming the AP's IE conforms to the spec, we now parse the IE and
re-build it for use with (Re)Association.
Since the full IE is no longer used, it was removed from scan_bss, and
replaced with a bit for HS20 support (hs20_capable). This member is
now used the same as hs20_ie was.
The version parsed during scan results is now used when building the
(Re)Association IE.
The HS20 indication element should always be included during
(Re)Association per the spec. This removes the need for a
dedicated boolean, and now the hs20_ie can be used instead.
P2P probe requests are to be sent at min 6.0 Mb/s using OFDM,
specifically the 802.11b rates are prohibited (section 2.4.1 in Wi-Fi
P2p Technical Spec v1.7), some of which use CCK modulation. This is
already the default for 5G but for 2.4G the drivers generally do this
if we set the NL80211_ATTR_TX_NO_CCK_RATE flags with
NL80211_CMD_TRIGGER_SCAN.
The ifindex is used to index the netdevs in the system (wlan, ethernet,
etc.) but we can also do wifi scanning on interfaces that have no
corresponding netdev object, like the P2P-device virtual interfaces.
Use the wdev id's to reference interfaces, the nl80211 api doesn't care
whether we use a NL80211_ATTR_IFINDEX or NL80211_ATTR_WDEV. Only
wireless interfaces have a wdev id.
In order to do ANQP efficiently IWD needs the ability to suspend scanning
temporarily. This is because both scanning and ANQP go offchannel and must
remain off channel for some amount of time. This cannot be done
simultaneously and if e.g. ANQP is requested after a scan is already
pending, the kernel will wait till that scan finishes before sending out
the frame.
This IE tells us what Advertisement Protocols the AP supports. This
is only here to look for ANQP support, so all this does is iterate
through all other Advertisement Protocol tuples looking for ANQP.
If found, anqp_capable is set in the scan_bss
The vendor specific IE was being parsed only to check if the AP supported
WPA, which used a Microsoft OUI. Hotspot/OSEN uses neither WPA or RSN
(although its nearly identical to RSN) so the we also need to check for
this Wifi-Alliance OUI and set bss->osen (new) if found.
Previously, the scan results were disregarded once the new
ones were available. To enable the scan scenarios where the
new scan results are delivered in parts, we introduce a
concept of aging BSSs and will remove them based on
retention time.
This is not used by any of the scan notify callback implementations and
for P2P we're going to need to scan on an interface without an ifindex
so without this the other changes should be mostly contained in scan.
This adds support for parsing the VHT IE, which allows a BSS supporting
VHT (80211ac) to be ranked higher than a BSS supporting only HT/basic
rates. Now, with basic/HT/VHT parsing we can calculate the theoretical
maximum data rate for all three and rank the BSS based on that.
This adds HT IE parsing and data rate calculation for HT (80211n)
rates. Now, a BSS supporting HT rates will be ranked higher than
a basic rate BSS, assuming the RSSI is at an acceptable level.
The spec dictates RSSI thresholds for different modulation schemes, which
correlate to different data rates. Until now were were ranking a BSS with
only looking at its advertised data rate, which may not even be possible
if the RSSI does not meet the threshold.
Now, RSSI is taken into consideration and the data rate returned from
parsing (Ext) Supported Rates IE(s) will reflect that.
If there are Ad-hoc BSSes they should be present in the scan results
together with regular APs as far as scan.c is concerned. But in
station mode we can't connect to them -- the Connect method will fail and
autoconnect would fail. Since we have no property to indicate a
network is an IBSS just filter these results out for now. There are
perhaps better solutions but the benefit is very low.
Pass an additional parameter to the scan results notify functions to
tell them whether the scan was successful. If it wasn't don't bother
passing an empty bss_list queue, pass NULL as bss_list. This way the
callbacks can tell whether the scan indicates there are no BSSes in
range or simply was aborted and the old scan results should be kept.
Add a flush flag to scan_parameters to tell the kernel to flush the
cache of scan results before the new scan. Use this flag in the
active scan during roaming.
Add a version of scan_active that accepts a struct with the scan
parameters so we can more easily add new parameters. Since the genl
message is now built within scan_active_start the extra_ie memory
can be freed by the caller at any time.
Don't decide on the AKM suite to use when the bss entries are received
and processed, instead select the suite when the connection is triggered
using a new function device_select_akm_suite, similar to
wiphy_select_cipher(). Describing the AKM suite through flags will be
more difficult when more than 2 suites per security type are supported.
Also handle the wiphy_select_cipher 0 return value when no cipher can be
selected.
In many cases the pairwise and group cipher information is not the only
information needed from the BSS RSN/WPA elements in order to make a
decision. For example, th MFPC/MFPR bits might be needed, or
pre-authentication capability bits, group management ciphers, etc.
This patch refactors bss_get_supported_ciphers into the more general
scan_bss_get_rsn_info function
This function takes an Operating Channel and a Country String to convert
it into a band. Using scan_oper_class_to_band and scan_channel_to_freq,
an Operating Channel, a Country String and a Channel Number together can
be converted into an actual frequency. EU and US country codes based on
wpa_supplicant's tables.