This will help to get rid of magic number use throughout the project.
The definitions should be limited to global magic numbers that are used
throughout the project, for example SSID length, MAC address length,
etc.
To reduce code duplication and prepare for moving the BSS interface
to station, add a new API so station can create a BSS path without
a network object directly.
This adds a new DBus object/interface for tracking BSS's for
a given network. Since scanning replaces scan_bss objects some
new APIs were added to avoid tearing down the associated DBus
object for each BSS.
network_bss_start_update() should be called before any new BSS's
are added to the network object. This will keep track of the old
list and create a new network->bss_list where more entries can
be added. This is effectively replacing network_bss_list_clear,
except it keeps the old list around until...
network_bss_stop_update() is called when all BSS's have been
added to the network object. This will then iterate the old list
and lookup if any BSS DBus objects need to be destroyed. Once
completed the old list is destroyed.
This was added to support a single buggy AP model that failed to
negotiate the SAE group correctly. This may still be a problem but
since then the [Network].UseDefaultEccGroup option has been added
which accomplishes the same thing.
Remove the special handling for this specific OUI and rely on the
user setting the new option if they have problems.
If either the settings specify it, or the scan_bss is flagged, set
the use_default_ecc_group flag in the handshake.
This also renames the flag to cover both OWE and SAE
There is special handling for buggy OWE APs which set a network flag
to use the default OWE group. Utilize the more persistent setting
within known-networks as well as the network object (in case there
is no profile).
This also renames the get/set APIs to be generic to ECC groups rather
than only OWE.
In order to support an ordered list of known frequencies the list
should be in order of last seen BSS frequencies with the highest
ranked ones first. To accomplish this without adding a lot of
complexity the frequencies can be pushed into the list as long as
they are pushed in reverse rank order (lowest rank first, highest
last). This ensures that very high ranked BSS's will always get
superseded by subsequent scans if not seen.
This adds a new network API to update the known frequency list
based on the current newtork->bss_list. This assumes that station
always wipes the BSS list on scans and populates with only fresh
BSS entries. After the scan this API can be called and it will
reverse the list, then add each frequency.
If a known network is modified on disk known networks does not have
any way of notifying other modules. This will be needed to support a
corner case in DPP if a profile exists but is overwritten after DPP
configuration. Add this event to known networks and handle it in
network.c (though nothing needs to be done in that case).
The path argument was used purely for debugging. It can be just as
informational printing just the SSID of the profile that failed to
parse the setting without requiring callers allocate a string to
call the function.
Adds a new network profile setting [Security].PasswordIdentifier.
When set (and the BSS enables SAE password identifiers) the network
and handshake object will read this and use it for the SAE
exchange.
Building the handshake will fail if:
- there is no password identifier set and the BSS sets the
"exclusive" bit.
- there is a password identifier set and the BSS does not set
the "in-use" bit.
For adding SAE password identifiers the capability bits need to be
verified when loading the identifier from the profile. Pass the
BSS object in to network_load_psk rather than the 'need_passphrase'
boolean.
This is being done to allow the DPP module to work correctly. DPP
currently uses __station_connect_network incorrectly since it
does not (and cannot) change the state after calling. The only
way to connect with a state change is via station_connect_network
which requires a DBus method that triggered the connection; DPP
does not have this due to its potentially long run time.
To support DPP there are a few options:
1. Pass a state into __station_connect_network (this patch)
2. Support a NULL DBus message in station_connect_network. This
would require several NULL checks and adding all that to only
support DPP just didn't feel right.
3. A 3rd connect API in station which wraps
__station_connect_network and changes the state. And again, an
entirely new API for only DPP felt wrong (I guess we did this
for network_autoconnect though...)
Its about 50/50 between call sites that changed state after calling
and those that do not. Changing the state inside
__station_connect_network felt useful enough to cover the cases that
could benefit and the remaining cases could handle it easily enough:
- network_autoconnect(), and the state is changed by station after
calling so it more or less follows the same pattern just routes
through network. This will now pass the CONNECTING_AUTO state
from within network vs station.
- The disconnect/reconnect path. Here the state is changed to
ROAMING prior in order to avoid multiple state changes. Knowing
this the same ROAMING state can be passed which won't trigger a
state change.
- Retrying after a failed BSS. The state changes on the first call
then remains the same for each connection attempt. To support this
the current station->state is passed to avoid a state change.
If a OWE network is buggy and requires the default group this info
needs to be stored in network in order for it to set this into the
handshake on future connect attempts.
For network configuration files the man pages (iwd.network) state
that [General].{AlwaysRandomizeAddress,AddressOverride} are only
used if main.conf has [General].AddressRandomization=network.
This actually was not being enforced and both iwd.network settings
were still taken into account regardless of what AddressRandomization
was set to (even disabled).
The handshake setup code now checks the AddressRandomization value
and if anything other than 'network' skips the randomization.
ConnectHiddenNetwork creates a temporary network object and initiates a
connection with it. If the connection fails (due to an incorrect
passphrase or other reasons), then this temporary object is destroyed.
Delay its destruction until network_disconnected() since
network_connect_failed is called too early. Also, re-order the sequence
in station_reset_connection_state() in order to avoid using the network
object after it has been freed by network_disconnected().
Fixes: 85d9d6461f1f ("network: Hide hidden networks on connection error")
station_hide_network will remove and free the network object, so calling
network_close_settings will result in a crash. Make sure this is done
prior to network object's destruction.
Fixes: 85d9d6461f1f ("network: Hide hidden networks on connection error")
If a user connection fails on a freshly scanned psk or open hidden
network, during passphrase request or after, it shall be removed from
the network list. Otherwise, it would be possible to directly connect
to that known network, which will appear as not hidden.
The 802.11ax standards adds some restrictions for the 6GHz band. In short
stations must use SAE, OWE, or 8021x on this band and frame protection is
required.
This code path was never tested and used to ensure a OWE transition
candidate gets selected over an open one (e.g. if all the BSS's are
blacklisted). But this logic was incorrect and the path was being
taken for BSS's that did not contain the owe_trans element, basically
all BSS's. For RSN's this was somewhat fine since the final check
would set a candidate, but for open BSS's the loop would start over
and potentially complete the loop without ever returning a candidate.
If fallback was false, NULL would be returned.
To fix this only take the OWE transition path if its an OWE transition
BSS, i.e. inverse the logic.
This changes scan_bss from using separate members for each
OWE transition element data type (ssid, ssid_len, and bssid)
to a structure that holds them all.
This is being done because OWE transition has option operating
class and channel bytes which will soon be parsed. This would
end up needing 5 separate members in scan_bss which is a bit
much for a single IE that needs to be parsed.
This makes checking the presense of the IE more convenient
as well since it can be done with a simple NULL pointer check
rather than having to l_memeqzero the BSSID.
There isn't much control station has with how BSS's are inserted to
a network object. The rank algorithm makes that decision. Because of
this we could end up in a situation where the Open BSS is preferred
over the OWE transition BSS.
In attempt to better handle this any Open BSS in this type of network
will not be chosen unless its the only candidate (e.g. no other BSSs,
inability to connect with OWE, or an improperly configured network).
This was actually broken if triggered because __network_connect
checks if network->connect_after_owe_hidden is set and returns
already in progress. We want to keep this behavior though for
obvious reasons.
To fix this station_connect_network can be called directly which
bypasses the check. This is essentially how ANQP avoids this
problem as well.
Similar to ANQP a connect call could come in while station is
scanning for OWE hidden networks. This is supported in the same
manor by saving away the dbus message and resuming the connection
after the hidden OWE scan.
With the addition of OWE transition network needs to be notified
of the hidden OWE scan which is quite similar to how it is notified
of ANQP. The ANQP event watch can be made generic and reused to
allow other events besides ANQP.
This is being added to support OWE transition mode. For these
type of networks the OWE BSS may contain a different SSID than
that of the network, but the WFA spec requires this be hidden
from the user. This means we need to set the handshake SSID based
on the BSS rather than the network object.
The hotspot case can actually result in network being NULL which
ends up crashing when accessing "->secrets". In addition any
secrets on this network were never removed for hotspot networks
since everything happened in network_unset_hotspot.
This refactors some code to eliminate getting the ERP entry twice
by simply returning it from network_has_erp_identity (now renamed
to network_get_erp_cache). In addition this code was moved into
station_build_handshake_rsn and properly cleaned up in case there
was an error or if a FILS AKM was not chosen.
Transition Disable indications and information stored in the network
profile needs to be enforced. Since Transition Disable information is
now stored inside the network object, add a new method
'network_can_connect_bss' that will take this information into account.
wiphy_can_connect method is thus deprecated and removed.
Transition Disable can also result in certain AKMs and pairwise ciphers
being disabled, so wiphy_select_akm method's signature is changed and
takes the (possibly overriden) ie_rsn_info as input.
This indication can come in via EAPoL message 3 or during
FILS Association. It carries information as to whether certain
transition mode options should be disabled. See WPA3 Specification,
version 3 for more details.
Some network settings keys are set / parsed in multiple files. Add a
utility to parse all common network configuration settings in one place.
Also add some defines to make sure settings are always saved in the
expected group/key.
Most parameters set into the handshake object are actually known by the
network object itself and not station. This includes address
randomization settings, EAPoL settings, passphrase/psk/8021x settings,
etc. Since the number of these settings will only keep growing, move
the handshake setup into network itself. This also helps keep network
internals better encapsulated.
Refactor network_sync_psk to not require setting attributes into
multiple settings objects. This is in fact unnecessary as the parsed
security parameters are used everywhere else instead. Also make sure to
wipe the [Security] group first, in case any settings were invalid
during loading or otherwise invalidated.