Before this change DPP was writing the credentials both to disk
and into the network object directly. This allowed the connection
to work fine but additional settings were not picked up due to
network_set_passphrase/psk loading the settings before they were
written.
Instead DPP can avoid setting the credentials to the network
object entirely and just write them to disk. Then, wait for
known networks to notify that the profile was either created
or updated then DPP can proceed to connecting. network_autoconnect()
will take care of loading the profile that DPP wrote and remove the
need for DPP to touch the network object at all.
One thing to note is that an idle callback is still needed from
within the known networks callback. This is because a new profile
requires network.c to set the network_info which is done in the
known networks callback. Rather than assume that network.c will be
called into before dpp.c an l_idle was added.
If a known network is modified on disk known networks does not have
any way of notifying other modules. This will be needed to support a
corner case in DPP if a profile exists but is overwritten after DPP
configuration. Add this event to known networks and handle it in
network.c (though nothing needs to be done in that case).
Without the change test-dpp fails on aarch64-linux as:
$ unit/test-dpp
TEST: DPP test responder-only key derivation
TEST: DPP test mutual key derivation
TEST: DPP test PKEX key derivation
test-dpp: unit/test-dpp.c:514: test_pkex_key_derivation: Assertion `!memcmp(tmp, __tmp, 32)' failed.
This happens due to int/size_t type mismatch passed to vararg
parameters to prf_plus():
bool prf_plus(enum l_checksum_type type, const void *key, size_t key_len,
void *out, size_t out_len,
size_t n_extra, ...)
{
// ...
va_start(va, n_extra);
for (i = 0; i < n_extra; i++) {
iov[i + 1].iov_base = va_arg(va, void *);
iov[i + 1].iov_len = va_arg(va, size_t);
// ...
Note that varargs here could only be a sequence of `void *` / `size_t`
values.
But in src/dpp-util.c `iwd` attempted to pass `int` there:
prf_plus(sha, prk, bytes, z_out, bytes, 5,
mac_i, 6, // <- here
mac_r, 6, // <- and here
m_x, bytes,
n_x, bytes,
key, strlen(key));
aarch64 stores only 32-bit value part of the register:
mov w7, #0x6
str w7, [sp, #...]
and loads full 64-bit form of the register:
ldr x3, [x3]
As a result higher bits of `iov[].iov_len` contain unexpected values and
sendmsg sends a lot more data than expected to the kernel.
The change fixes test-dpp test for me.
While at it fixed obvious `int` / `size_t` mismatch in src/erp.c.
Fixes: 6320d6db0f ("crypto: remove label from prf_plus, instead use va_args")
The path argument was used purely for debugging. It can be just as
informational printing just the SSID of the profile that failed to
parse the setting without requiring callers allocate a string to
call the function.
Adds a new network profile setting [Security].PasswordIdentifier.
When set (and the BSS enables SAE password identifiers) the network
and handshake object will read this and use it for the SAE
exchange.
Building the handshake will fail if:
- there is no password identifier set and the BSS sets the
"exclusive" bit.
- there is a password identifier set and the BSS does not set
the "in-use" bit.
Using this will provide netdev with a connect callback and unify the
roaming result notification between FT and reassociation. Both paths
will now end up in station_reassociate_cb.
This also adds another return case for ft_handshake_setup which was
previously ignored by ft_associate. Its likely impossible to actually
happen but should be handled nevertheless.
Fixes: 30c6a10f28 ("netdev: Separate connect_failed and disconnected paths")
Essentially exposes (and renames) netdev_ft_tx_associate in order to
be called similarly to netdev_reassociate/netdev_connect where a
connect callback can be provided. This will fix the current bug where
if association times out during FT IWD will hang and never transition
to disconnected.
This also removes the calling of the FT_ROAMED event and instead just
calls the connect callback (since its now set). This unifies the
callback path for reassociation and FT roaming.
This will be called from station after FT-authentication has
finished. It sets up the handshake object to perform reassociation.
This is essentially a copy-paste of ft_associate without sending
the actual frame.
In general only the authenticator FTE is used/validated but with
some FT refactoring coming there needs to be a way to build the
supplicants FTE into the handshake object. Because of this there
needs to be separate FTE buffers for both the authenticator and
supplicant.
For adding SAE password identifiers the capability bits need to be
verified when loading the identifier from the profile. Pass the
BSS object in to network_load_psk rather than the 'need_passphrase'
boolean.
iov_ie_append assumed that a single IE was being added and thus the
length of the IE could be extracted directly from the element. However,
iov_ie_append was used on buffers which could contain multiple IEs
concatenated together, for example in handshake_state::vendor_ies. Most
of the time this was safe since vendor_ies was NULL or contained a
single element, but would result in incorrect behavior in the general
case. Fix that by changing iov_ie_append signature to take an explicit
length argument and have the caller specify whether the element is a
single IE or multiple.
Fixes: 7e9971661b ("netdev: Append any vendor IEs from the handshake")
Use an _auto_ variable to cleanup IEs allocated by
p2p_build_association_req(). While here, take out unneeded L_WARN_ON
since p2p_build_association_req cannot fail.
If the FT-Authenticate frame has been sent then a deauth is received
the work item for sending the FT-Associate frame is never canceled.
When this runs station->connected_network is NULL which causes a
crash:
src/station.c:station_try_next_transition() 7, target xx:xx:xx:xx:xx:xx
src/wiphy.c:wiphy_radio_work_insert() Inserting work item 5843
src/wiphy.c:wiphy_radio_work_insert() Inserting work item 5844
src/wiphy.c:wiphy_radio_work_done() Work item 5842 done
src/wiphy.c:wiphy_radio_work_next() Starting work item 5843
src/netdev.c:netdev_mlme_notify() MLME notification Remain on Channel(55)
src/ft.c:ft_send_authenticate()
src/netdev.c:netdev_mlme_notify() MLME notification Frame TX Status(60)
src/netdev.c:netdev_link_notify() event 16 on ifindex 7
src/netdev.c:netdev_mlme_notify() MLME notification Del Station(20)
src/netdev.c:netdev_mlme_notify() MLME notification Deauthenticate(39)
src/netdev.c:netdev_deauthenticate_event()
src/netdev.c:netdev_mlme_notify() MLME notification Disconnect(48)
src/netdev.c:netdev_disconnect_event()
Received Deauthentication event, reason: 7, from_ap: true
src/station.c:station_disconnect_event() 7
src/station.c:station_disassociated() 7
src/station.c:station_reset_connection_state() 7
src/station.c:station_roam_state_clear() 7
src/netconfig.c:netconfig_event_handler() l_netconfig event 2
src/netconfig-commit.c:netconfig_commit_print_addrs() removing address: yyy.yyy.yyy.yyy
src/resolve.c:resolve_systemd_revert() ifindex: 7
[DHCPv4] l_dhcp_client_stop:1264 Entering state: DHCP_STATE_INIT
src/station.c:station_enter_state() Old State: connected, new state: disconnected
src/station.c:station_enter_state() Old State: disconnected, new state: autoconnect_quick
src/wiphy.c:wiphy_radio_work_insert() Inserting work item 5845
src/netdev.c:netdev_mlme_notify() MLME notification Cancel Remain on Channel(56)
src/wiphy.c:wiphy_radio_work_done() Work item 5843 done
src/wiphy.c:wiphy_radio_work_next() Starting work item 5844
"Program terminated with signal SIGSEGV, Segmentation fault.",
"#0 0x0000565359ee3f54 in network_bss_find_by_addr ()",
"#0 0x0000565359ee3f54 in network_bss_find_by_addr ()",
"#1 0x0000565359ec9d23 in station_ft_work_ready ()",
"#2 0x0000565359ec0af0 in wiphy_radio_work_next ()",
"#3 0x0000565359f20080 in offchannel_mlme_notify ()",
"#4 0x0000565359f4416b in received_data ()",
"#5 0x0000565359f40d90 in io_callback ()",
"#6 0x0000565359f3ff4d in l_main_iterate ()",
"#7 0x0000565359f4001c in l_main_run ()",
"#8 0x0000565359f40240 in l_main_run_with_signal ()",
"#9 0x0000565359eb3888 in main ()"
ssid is declared as a 32 byte field in handshake_state, hence using it
as a string which is assumed to be nul-terminated will fail for SSIDs
that are 32 bytes long.
Fixes: d938d362b2 ("erp: ERP implementation and key cache move")
Fixes: 433373fe28 ("eapol: cache ERP keys on EAP success")
ssid is declared as a 32 byte field in handshake_state, hence using it
as a string which is assumed to be nul-terminated will fail for SSIDs
that are 32 bytes long.
Fixes: 1f14782857 ("wiphy: add _generate_address_from_ssid")
Fixes: 5a1b1184fc ("netdev: support per-network MAC addresses")
In netdev_retry_owe, if l_gen_family_send fails, the connect_cmd is
never freed or reset. Fix that.
While here, use a stack variable instead of netdev member, since the use
of such a member is unnecessary and confusing.
vendor_ies stored in handshake_state are already added as part of
netdev_populate_common_ies(), which is already invoked by
netdev_build_cmd_connect().
Normally vendor_ies is NULL for OWE connections, so no IEs are
duplicated as a result.
CC src/adhoc.o
In file included from src/adhoc.c:28:0:
/usr/include/linux/if.h:234:19: error: field ‘ifru_addr’ has incomplete type
struct sockaddr ifru_addr;
^
/usr/include/linux/if.h:235:19: error: field ‘ifru_dstaddr’ has incomplete type
struct sockaddr ifru_dstaddr;
^
/usr/include/linux/if.h:236:19: error: field ‘ifru_broadaddr’ has incomplete type
struct sockaddr ifru_broadaddr;
^
/usr/include/linux/if.h:237:19: error: field ‘ifru_netmask’ has incomplete type
struct sockaddr ifru_netmask;
^
/usr/include/linux/if.h:238:20: error: field ‘ifru_hwaddr’ has incomplete type
struct sockaddr ifru_hwaddr;
^
Very rarely on ath10k (potentially other ath cards), disabling
power save while the interface is down causes a timeout when
bringing the interface back up. This seems to be a race in the
driver or firmware but it causes IWD to never start up properly
since there is no retry logic on that path.
Retrying is an option, but a more straight forward approach is
to just reorder the logic to set power save off after the
interface is already up. If the power save setting fails we can
just log it, ignore the failure, and continue. From a users point
of view there is no real difference in doing it this way as
PS still gets disabled prior to IWD connecting/sending data.
Changing behavior based on a buggy driver isn't something we
should be doing, but in this instance the change shouldn't have
any downside and actually isn't any different than how it has
been done prior to the driver quirks change (i.e. use network
manager, iw, or iwconfig to set power save after IWD starts).
For reference, this problem is quite rare and difficult to say
exactly how often but certainly <1% of the time:
iwd[1286641]: src/netdev.c:netdev_disable_ps_cb() Disabled power save for ifindex 54
kernel: ath10k_pci 0000:02:00.0: wmi service ready event not received
iwd[1286641]: Error bringing interface 54 up: Connection timed out
kernel: ath10k_pci 0000:02:00.0: Could not init core: -110
After this IWD just sits idle as it has no interface to start using.
This is even reproducable outside of IWD if you loop and run:
ip link set <wlan> down
iw dev <wlan> set power_save off
ip link set <wlan> up
Eventually the 'up' command will fail with a timeout.
I've brought this to the linux-wireless/ath10k mailing list but
even if its fixed in future kernels we'd still need to support
older kernels, so a workaround/change in IWD is still required.
This is done already for DPP, do the same for PKEX. Few drivers
(ath9k upstream, ath10k/11k in progress) support this which is
unfortunate but since a configurator will not work without this
capability its best to fail early.
The DPP spec allows 3rd party fields in the DPP configuration
object (section 4.5.2). IWD can take advantage of this (when
configuring another IWD supplicant) to communicate additional
profile options that may be required for the network.
The new configuration member will be called "/net/connman/iwd"
and will be an object containing settings specific to IWD.
More settings could be added here if needed but for now only
the following are defined:
{
send_hostname: true/false,
hidden: true/false
}
These correspond to the following network profile settings:
[IPv4].SendHostname
[Settings].Hidden
The scan result handling was fragile because it assumed the kernel
would only give results matching the requested SSID. This isn't
something we should assume so instead keep the configuration object
around until after the scan and use the target SSID to lookup the
network.
Nearly every use of the ssid member first has to memcpy it to a
buffer and NULL terminate. Instead just store the ssid as a
string when creating/parsing from JSON.
The DPP-PKEX spec provides a very limited list of frequencies used
to discover configurators, only 3 on 2.4 and 5GHz bands. Since
configurators (at least in IWD's implementation) are only allowed
on the current operating frequency its very unlikely an enrollee
will find a configurator on these frequencies out of the entire
spectrum.
The spec does mention that the 3 default frequencies should be used
"In lieu of specific channel information obtained in a manner outside
the scope of this specification, ...". This allows the implementation
some flexibility in using a broader range of frequencies.
To increase the chances of finding a configurator shared code
enrollees will first issue a scan to determine what access points are
around, then iterate these frequencies. This is especially helpful
when the configurators are IWD-based since we know that they'll be
on the same channels as the APs in the area.
The post-DPP connection was never done quite right due to station's
state being unknown. The state is now tracked in DPP by a previous
patch but the scan path in DPP is still wrong.
It relies on station autoconnect logic which has the potential to
connect to a different network than what was configured with DPP.
Its unlikely but still could happen in theory. In addition the scan
was not selectively filtering results by the SSID that DPP
configured.
This fixes the above problems by first filtering the scan by the
SSID. Then setting the scan results into station without triggering
autoconnect. And finally using network_autoconnect() directly
instead of relying on station to choose the SSID.
DPP (both DPP and PKEX) run the risk of odd behavior if station
decides to change state. DPP is completely unaware of this and
best case would just result in a protocol failure, worst case
duplicate calls to __station_connect_network.
Add a station watch and stop DPP if station changes state during
the protocol.