An unexpected Associate event would cause iwd to crash when accessing
netdev->handshake->mde. netdev->handshake is only set if we're
attempting to connect or connected somewhere so check netdev->connected
first.
FILS needs to allocate an extra 16 bytes of key data for the AES-SIV
vector. Instead of leaving it up to the caller to figure this out (as
was done with the GTK builder) eapol_create_common can allocate the
extra space since it knows the MIC length.
This also updates _create_gtk_2_of_2 as it no longer needs to create
an extra data array.
Since FILS does not use a MIC, the 1/4 handler would always get called
for FILS PTK rekeys. We can use the fact that message 1/4 has no MIC as
well as no encrypted data to determine which packet it is. Both no MIC
and no encrypted data means its message 1/4. Anything else is 3/4.
For FILS rekeys, we still derive the PTK using the 4-way handshake.
And for FILS-SHA384 we need the SHA384 KDF variant when deriving.
This change adds both FILS-SHA256 and FILS-SHA384 to the checks
for determining the SHA variant.
crypto_derive_pairwise_ptk was taking a boolean to decide whether to
use SHA1 or SHA256, but for FILS SHA384 may also be required for
rekeys depending on the AKM.
crypto_derive_pairwise_ptk was changed to take l_checksum_type instead
of a boolean to allow for all 3 SHA types.
AP still relies on the get_data/set_length semantics. Its more convenient
to still use these since it avoids the need for extra temporary buffers
when building the rates IE.
The TLV builder APIs were not very intuative, and in some (or all)
cases required access to the builder structure directly, either to
set the TLV buffer or to get the buffer at the end.
This change adds a new API, ie_tlv_builder_set_data, which both sets
the length for the current TLV and copies the TLV data in one go.
This will avoid the need for memcpy(ie_tlv_builder_get_data(...),...)
ie_tlv_builder_finalize was also changed to return a pointer to the
start of the build buffer. This will eliminate the need to access
builder.tlv after building the TLVs.
ie_tlv_builder_init was changed to take an optional buffer to hold
the TLV data. Passing NULL/0 will build the TLV in the internal
buffer. Passing in a pointer and length will build into the passed
in buffer.
Let manager.c signal to wiphy.c when the wiphy parsing from the genl
messages is complete. When we query for existing wiphy using the
GET_WIPHY dump command we get many genl messages per wiphy, on a
notification we only get one message. So after wiphy_create there may
be one or many calls to wiphy_update_from_genl. wiphy_create_complete
is called after all of them, so wiphy.c can be sure it's done with
parsing the wiphy attributes when in prints the new wiphy summary log
message, like it did before manager.c was added.
I had wrongly assumed that all the important wiphy attributes were in
the first message in the dump, but NL80211_ATTR_EXT_FEATURES was not and
wasn't being parsed which was breaking at least testRSSIAgent.
SAE was behaving inconsitently with respect to freeing the state.
It was freeing the SM internally on failure, but requiring netdev
free it on success.
This removes the call to sae_sm_free in sae.c upon failure, and
instead netdev frees the SM in the complete callback in all cases
regardless of success or failure.
From netdev's prospective FILS works the same as OWE/SAE where we create
a fils_sm and forward all auth/assoc frames into the FILS module. The
only real difference is we do not start EAPoL once FILS completes.
FILS (Fast Initial Link Setup) allows a station to negotiate a PTK during
authentication and association. This allows for a faster connection as
opposed to doing full EAP and the 4-way. FILS uses ERP (EAP Reauth Protocol)
to achieve this, but encapsulates the ERP data into an IE inside
authenticate frames. Association is then used to verify both sides have
valid keys, as well as delivering the GTK/IGTK.
FILS will work similar to SAE/OWE/FT where netdev registers a fils_sm, and
then forwards all Auth/Assoc frame data to and from the FILS module.
Keeping the ERP cache on the handshake object allows station.c to
handle all the ERP details and encapsulate them into a handshake.
FILS can then use the ERP cache right from the handshake rather
than getting it itself.
wiphy_select_akm needed to be updated to take a flag, which can be
set to true if there are known reauth keys for this connection. If
we have reauth keys, and FILS is available we will choose it.
If the AP send an associate with an unsupported group status, OWE
was completely starting over and sending out an authenticate frame
when it could instead just resend the associate frame with a
different group.
With FILS support coming there needs to be a way to set the PTK directly.
Other AKMs derive the PTK via the 4-way handshake, but FILS computes the
PTK on its own.
This reverts commit 1e337259ce.
Using util_get_username was wrong in this context. MSCHAPv2 expects us
to only strip the domain name from identities of the form
domain\identity. util_get_username would also strip identities of the
form username@domain.com.
FILS-SHA384 got overlooked and the kek length was being hard coded
to 32 bytes when encrypting the key data. There was also one occurence
where the kek_len was just being set incorrectly.
If the input length is 16 bytes, this means aes_siv_decrypt should
only be verifying the 16 byte SIV and not decrypting any data. If
this is the case, we can skip over the whole AES-CTR portion of
AES-SIV and only verify the SIV.
In eapol_key_handle, 'have_snonce' is checked before decrypting the
key data. For FILS, there will be no snonce so this check can be
skipped if mic_len == 0.
The GTK handshake for FILS uses AES-SIV to encrypt the key data, and
does away with the MIC completely. Now, when finalizing the 2/2 GTK
packet we check the MIC length, and if zero we assume FILS is being
used and we use AES-SIV to encrypt the key data.
For FILS, there is no actual data being encrypted for GTK 2/2 (hence
why the input data length is zero). This results in only the SIV
being generated, which essentially serves the same purpose as a MIC.
FILS does not use a MIC, as well as requires encrypted data on GTK 2/2.
This updates eapol_create_gtk_2_of_2 to pass in extra data to
eapol_create_common, which will reserve room for this encrypted data.
Extra data is only reserved if mic_len == 0.
FILS does not use a MIC in EAPoL frames and also requires encrypted
data on all EAPoL frames. In the common builder the mic_len is now
checked and the flags are set appropriately.
FILS authentication does away with the MIC, so checking for key_mic
in the eapol key frame does not allow FILS to work. Now we pass in
the mic_len to eapol_verify_gtk_1_of_2, and if it is non-zero we can
check that the MIC is present in the frame.
FILS does not require an eapol_sm for authentication, but rekeys
are still performed using the 4-way handshake. Because of this
FILS needs to create a eapol_sm in a 'started' state, but without
calling eapol_start as this will initialize EAP and create handshake
timeouts.
This allows EAPoL to wait for any 4-way packets, and handle them
as rekeys.
ERP (EAP Reauthentication Protocol) allows a station to quickly
reauthenticate using keys from a previous EAP authentication.
This change both implements ERP as well as moves the key cache into
the ERP module.
ERP in its current form is here to only support FILS. ERP is likely not
widespread and there is no easy way to determine if an AP supports ERP
without trying it. Attempting ERP with a non-ERP enabled AP will actually
result in longer connection times since ERP must fail and then full EAP
is done afterwards. For this reason ERP was separated from EAP and a
separate ERP state machine must be created. As it stands now, ERP cannot
be used on its own, only with FILS.
Quick scan uses a set of frequencies associated with the
known networks. This allows to reduce the scan latency.
At this time, the frequency selection follows a very simple
logic by taking all known frequencies from the top 5 most
recently connected networks.
If connection isn't established after the quick scan attempt,
we fall back to the full periodic scan.
Instead of handling NEW_WIPHY events and WIHPY_DUMP events in a similar
fashion, split up the paths to optimize iwd startup time. There's
fundamentally no reason to wait a second (and eat up file-descriptor
resources for timers unnecessarily) when we can simply start an
interface dump right after the wiphy dump.
In case a new wiphy is added in the middle of a wiphy dump, we will
likely get a new wiphy event anyway, in which case a setup_timeout will
be created and we will ignore this phy during the interface dump
processing.
This also optimizes the case of iwd being re-started, in which case
there are no interfaces present.
Separate out the two types of NEW_WIPHY handlers into separate paths and
factor out the common code into a utility function.
Dumps of CMD_NEW_WIPHY can be split up over several messages, while
CMD_NEW_WIPHY events (generated when a new card is plugged in) are
stuffed into a single message.
This also prepares ground for follow-on commits where we will handle the
two types of events differently.