3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2024-12-22 21:22:37 +01:00

band: Move ht/vht data rate calculation out of ie.c

This commit is contained in:
Denis Kenzior 2021-06-02 10:58:38 -05:00
parent e41bee377d
commit 842a70a307
3 changed files with 112 additions and 107 deletions

View File

@ -20,9 +20,98 @@
* *
*/ */
#include <stdbool.h>
#include <stdint.h>
#include <ell/ell.h>
#include "band.h" #include "band.h"
void band_free(struct band *band) void band_free(struct band *band)
{ {
l_free(band); l_free(band);
} }
/*
* Base RSSI values for 20MHz (both HT and VHT) channel. These values can be
* used to calculate the minimum RSSI values for all other channel widths. HT
* MCS indexes are grouped into ranges of 8 (per spatial stream) where VHT are
* grouped in chunks of 10. This just means HT will not use the last two
* index's of this array.
*/
static const int32_t ht_vht_base_rssi[] = {
-82, -79, -77, -74, -70, -66, -65, -64, -59, -57
};
/*
* Data Rate for HT/VHT is obtained according to this formula:
* Nsd * Nbpscs * R * Nss / (Tdft + Tgi)
*
* Where Nsd is [52, 108, 234, 468] for 20/40/80/160 Mhz respectively
* Nbpscs is [1, 2, 4, 6, 8] for BPSK/QPSK/16QAM/64QAM/256QAM
* R is [1/2, 2/3, 3/4, 5/6] depending on the MCS index
* Nss is the number of spatial streams
* Tdft = 3.2 us
* Tgi = Long/Short GI of 0.8/0.4 us
*
* Short GI rate can be easily obtained by multiplying by (10 / 9)
*
* The table was pre-computed using the following python snippet:
* rfactors = [ 1/2, 1/2, 3/4, 1/2, 3/4, 2/3, 3/4, 5/6, 3/4, 5/6 ]
* nbpscs = [1, 2, 2, 4, 4, 6, 6, 6, 8, 8 ]
* nsds = [52, 108, 234, 468]
*
* for nsd in nsds:
* rates = []
* for i in xrange(0, 10):
* data_rate = (nsd * rfactors[i] * nbpscs[i]) / 0.004
* rates.append(int(data_rate) * 1000)
* print('rates for nsd: ' + nsd + ': ' + rates)
*/
static const uint64_t ht_vht_rates[4][10] = {
[OFDM_CHANNEL_WIDTH_20MHZ] = {
6500000ULL, 13000000ULL, 19500000ULL, 26000000ULL,
39000000ULL, 52000000ULL, 58500000ULL, 65000000ULL,
78000000ULL, 86666000ULL },
[OFDM_CHANNEL_WIDTH_40MHZ] = {
13500000ULL, 27000000ULL, 40500000ULL, 54000000ULL,
81000000ULL, 108000000ULL, 121500000ULL, 135000000ULL,
162000000ULL, 180000000ULL, },
[OFDM_CHANNEL_WIDTH_80MHZ] = {
29250000ULL, 58500000ULL, 87750000ULL, 117000000ULL,
175500000ULL, 234000000ULL, 263250000ULL, 292500000ULL,
351000000ULL, 390000000ULL, },
[OFDM_CHANNEL_WIDTH_160MHZ] = {
58500000ULL, 117000000ULL, 175500000ULL, 234000000ULL,
351000000ULL, 468000000ULL, 526500000ULL, 585000000ULL,
702000000ULL, 780000000ULL,
}
};
/*
* Both HT and VHT rates are calculated in the same fashion. The only difference
* is a relative MCS index is used for HT since, for each NSS, the formula
* is the same with relative index's. This is why this is called with index % 8
* for HT, but not VHT.
*/
bool band_ofdm_rate(uint8_t index, enum ofdm_channel_width width,
int32_t rssi, uint8_t nss, bool sgi,
uint64_t *data_rate)
{
uint64_t rate;
int32_t width_adjust = width * 3;
if (rssi < ht_vht_base_rssi[index] + width_adjust)
return false;
rate = ht_vht_rates[width][index];
if (sgi)
rate = rate / 9 * 10;
rate *= nss;
*data_rate = rate;
return true;
}

View File

@ -20,6 +20,13 @@
* *
*/ */
enum ofdm_channel_width {
OFDM_CHANNEL_WIDTH_20MHZ = 0,
OFDM_CHANNEL_WIDTH_40MHZ,
OFDM_CHANNEL_WIDTH_80MHZ,
OFDM_CHANNEL_WIDTH_160MHZ,
};
struct band { struct band {
uint8_t vht_mcs_set[8]; uint8_t vht_mcs_set[8];
uint8_t vht_capabilities[4]; uint8_t vht_capabilities[4];
@ -32,3 +39,7 @@ struct band {
}; };
void band_free(struct band *band); void band_free(struct band *band);
bool band_ofdm_rate(uint8_t index, enum ofdm_channel_width width,
int32_t rssi, uint8_t nss, bool sgi,
uint64_t *data_rate);

119
src/ie.c
View File

@ -31,6 +31,7 @@
#include "ell/useful.h" #include "ell/useful.h"
#include "src/util.h" #include "src/util.h"
#include "src/crypto.h" #include "src/crypto.h"
#include "src/band.h"
#include "src/ie.h" #include "src/ie.h"
const unsigned char ieee_oui[3] = { 0x00, 0x0f, 0xac }; const unsigned char ieee_oui[3] = { 0x00, 0x0f, 0xac };
@ -1726,98 +1727,6 @@ static int ie_parse_supported_rates_from_data(const uint8_t *supp_rates_ie,
return 0; return 0;
} }
enum ht_vht_channel_width {
HT_VHT_CHANNEL_WIDTH_20MHZ = 0,
HT_VHT_CHANNEL_WIDTH_40MHZ,
HT_VHT_CHANNEL_WIDTH_80MHZ,
HT_VHT_CHANNEL_WIDTH_160MHZ,
};
/*
* Base RSSI values for 20MHz (both HT and VHT) channel. These values can be
* used to calculate the minimum RSSI values for all other channel widths. HT
* MCS indexes are grouped into ranges of 8 (per spatial stream) where VHT are
* grouped in chunks of 10. This just means HT will not use the last two
* index's of this array.
*/
static const int32_t ht_vht_base_rssi[] = {
-82, -79, -77, -74, -70, -66, -65, -64, -59, -57
};
/*
* Data Rate for HT/VHT is obtained according to this formula:
* Nsd * Nbpscs * R * Nss / (Tdft + Tgi)
*
* Where Nsd is [52, 108, 234, 468] for 20/40/80/160 Mhz respectively
* Nbpscs is [1, 2, 4, 6, 8] for BPSK/QPSK/16QAM/64QAM/256QAM
* R is [1/2, 2/3, 3/4, 5/6] depending on the MCS index
* Nss is the number of spatial streams
* Tdft = 3.2 us
* Tgi = Long/Short GI of 0.8/0.4 us
*
* Short GI rate can be easily obtained by multiplying by (10 / 9)
*
* The table was pre-computed using the following python snippet:
* rfactors = [ 1/2, 1/2, 3/4, 1/2, 3/4, 2/3, 3/4, 5/6, 3/4, 5/6 ]
* nbpscs = [1, 2, 2, 4, 4, 6, 6, 6, 8, 8 ]
* nsds = [52, 108, 234, 468]
*
* for nsd in nsds:
* rates = []
* for i in xrange(0, 10):
* data_rate = (nsd * rfactors[i] * nbpscs[i]) / 0.004
* rates.append(int(data_rate) * 1000)
* print('rates for nsd: ' + nsd + ': ' + rates)
*/
static const uint64_t ht_vht_rates[4][10] = {
[HT_VHT_CHANNEL_WIDTH_20MHZ] = {
6500000ULL, 13000000ULL, 19500000ULL, 26000000ULL,
39000000ULL, 52000000ULL, 58500000ULL, 65000000ULL,
78000000ULL, 86666000ULL },
[HT_VHT_CHANNEL_WIDTH_40MHZ] = {
13500000ULL, 27000000ULL, 40500000ULL, 54000000ULL,
81000000ULL, 108000000ULL, 121500000ULL, 135000000ULL,
162000000ULL, 180000000ULL, },
[HT_VHT_CHANNEL_WIDTH_80MHZ] = {
29250000ULL, 58500000ULL, 87750000ULL, 117000000ULL,
175500000ULL, 234000000ULL, 263250000ULL, 292500000ULL,
351000000ULL, 390000000ULL, },
[HT_VHT_CHANNEL_WIDTH_160MHZ] = {
58500000ULL, 117000000ULL, 175500000ULL, 234000000ULL,
351000000ULL, 468000000ULL, 526500000ULL, 585000000ULL,
702000000ULL, 780000000ULL,
}
};
/*
* Both HT and VHT rates are calculated in the same fashion. The only difference
* is a relative MCS index is used for HT since, for each NSS, the formula
* is the same with relative index's. This is why this is called with index % 8
* for HT, but not VHT.
*/
static bool calculate_ht_vht_data_rate(uint8_t index,
enum ht_vht_channel_width width,
int32_t rssi, uint8_t nss, bool sgi,
uint64_t *data_rate)
{
uint64_t rate;
int32_t width_adjust = width * 3;
if (rssi < ht_vht_base_rssi[index] + width_adjust)
return false;
rate = ht_vht_rates[width][index];
if (sgi)
rate = rate / 9 * 10;
rate *= nss;
*data_rate = rate;
return true;
}
static int ie_parse_ht_capability(struct ie_tlv_iter *iter, int32_t rssi, static int ie_parse_ht_capability(struct ie_tlv_iter *iter, int32_t rssi,
uint64_t *data_rate) uint64_t *data_rate)
{ {
@ -1867,19 +1776,15 @@ static int ie_parse_ht_capability(struct ie_tlv_iter *iter, int32_t rssi,
if (!support_40mhz) if (!support_40mhz)
goto check_20; goto check_20;
if (calculate_ht_vht_data_rate(i % 8, if (band_ofdm_rate(i % 8, OFDM_CHANNEL_WIDTH_40MHZ,
HT_VHT_CHANNEL_WIDTH_40MHZ, rssi, (i / 8) + 1, short_gi_40mhz, &drate)) {
rssi, (i / 8) + 1,
short_gi_40mhz, &drate)) {
*data_rate = drate; *data_rate = drate;
return 0; return 0;
} }
check_20: check_20:
if (!calculate_ht_vht_data_rate(i % 8, if (!band_ofdm_rate(i % 8, OFDM_CHANNEL_WIDTH_20MHZ,
HT_VHT_CHANNEL_WIDTH_20MHZ, rssi, (i / 8) + 1, short_gi_20mhz, &drate))
rssi, (i / 8) + 1,
short_gi_20mhz, &drate))
continue; continue;
if (!support_40mhz) { if (!support_40mhz) {
@ -2046,31 +1951,31 @@ static int ie_parse_vht_capability(struct ie_tlv_iter *vht_iter,
* on the channel width for this iteration. * on the channel width for this iteration.
*/ */
switch (width) { switch (width) {
case HT_VHT_CHANNEL_WIDTH_20MHZ: case OFDM_CHANNEL_WIDTH_20MHZ:
sgi = short_gi_20mhz; sgi = short_gi_20mhz;
break; break;
case HT_VHT_CHANNEL_WIDTH_40MHZ: case OFDM_CHANNEL_WIDTH_40MHZ:
sgi = short_gi_40mhz; sgi = short_gi_40mhz;
break; break;
case HT_VHT_CHANNEL_WIDTH_80MHZ: case OFDM_CHANNEL_WIDTH_80MHZ:
sgi = short_gi_80mhz; sgi = short_gi_80mhz;
break; break;
case HT_VHT_CHANNEL_WIDTH_160MHZ: case OFDM_CHANNEL_WIDTH_160MHZ:
sgi = short_gi_160mhz; sgi = short_gi_160mhz;
break; break;
} }
for (nss = minsize(rx_nss, tx_nss); nss > 0; nss--) { for (nss = minsize(rx_nss, tx_nss); nss > 0; nss--) {
/* NSS > 4 does not apply to 20/40MHz */ /* NSS > 4 does not apply to 20/40MHz */
if (width <= HT_VHT_CHANNEL_WIDTH_40MHZ && nss > 4) if (width <= OFDM_CHANNEL_WIDTH_40MHZ && nss > 4)
continue; continue;
for (mcs = minsize(max_rx_mcs, max_tx_mcs); for (mcs = minsize(max_rx_mcs, max_tx_mcs);
mcs >= 0; mcs--) { mcs >= 0; mcs--) {
uint64_t drate; uint64_t drate;
if (!calculate_ht_vht_data_rate(mcs, width, if (!band_ofdm_rate(mcs, width, rssi,
rssi, nss, sgi, &drate)) nss, sgi, &drate))
continue; continue;
if (drate > highest_rate) if (drate > highest_rate)