iwd/src/dpp.c

1279 lines
33 KiB
C
Raw Normal View History

2021-12-16 19:08:47 +01:00
/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2021 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <errno.h>
2021-12-16 19:08:47 +01:00
#include <ell/ell.h>
#include "linux/nl80211.h"
2021-12-16 19:08:47 +01:00
#include "src/dbus.h"
#include "src/netdev.h"
#include "src/module.h"
#include "src/dpp-util.h"
#include "src/band.h"
#include "src/frame-xchg.h"
#include "src/offchannel.h"
#include "src/wiphy.h"
#include "src/ie.h"
#include "src/iwd.h"
#include "src/util.h"
#include "src/crypto.h"
#include "src/mpdu.h"
#include "ell/useful.h"
#include "src/common.h"
#include "src/storage.h"
2021-12-16 19:08:47 +01:00
static uint32_t netdev_watch;
static struct l_genl_family *nl80211;
static uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
enum dpp_state {
DPP_STATE_NOTHING,
DPP_STATE_PRESENCE,
DPP_STATE_AUTHENTICATING,
DPP_STATE_CONFIGURING,
};
2021-12-16 19:08:47 +01:00
struct dpp_sm {
struct netdev *netdev;
char *uri;
uint64_t wdev_id;
uint8_t *pub_asn1;
size_t pub_asn1_len;
uint8_t pub_boot_hash[32];
const struct l_ecc_curve *curve;
size_t key_len;
size_t nonce_len;
struct l_ecc_scalar *boot_private;
struct l_ecc_point *boot_public;
enum dpp_state state;
uint32_t *freqs;
size_t freqs_len;
size_t freqs_idx;
uint32_t dwell;
uint32_t current_freq;
struct scan_freq_set *presence_list;
uint32_t offchannel_id;
uint8_t auth_addr[6];
uint8_t r_nonce[32];
uint8_t i_nonce[32];
uint8_t e_nonce[32];
uint64_t ke[L_ECC_MAX_DIGITS];
uint64_t k2[L_ECC_MAX_DIGITS];
struct l_ecc_scalar *proto_private;
struct l_ecc_point *proto_public;
struct l_ecc_point *i_proto_public;
uint8_t diag_token;
2021-12-16 19:08:47 +01:00
};
static void dpp_free_auth_data(struct dpp_sm *dpp)
{
if (dpp->proto_public) {
l_ecc_point_free(dpp->proto_public);
dpp->proto_public = NULL;
}
if (dpp->proto_private) {
l_ecc_scalar_free(dpp->proto_private);
dpp->proto_private = NULL;
}
if (dpp->i_proto_public) {
l_ecc_point_free(dpp->i_proto_public);
dpp->i_proto_public = NULL;
}
}
static void dpp_reset(struct dpp_sm *dpp)
{
if (dpp->uri) {
l_free(dpp->uri);
dpp->uri = NULL;
}
if (dpp->freqs) {
l_free(dpp->freqs);
dpp->freqs = NULL;
}
if (dpp->offchannel_id) {
offchannel_cancel(dpp->wdev_id, dpp->offchannel_id);
dpp->offchannel_id = 0;
}
dpp->state = DPP_STATE_NOTHING;
dpp_free_auth_data(dpp);
}
2021-12-16 19:08:47 +01:00
static void dpp_free(struct dpp_sm *dpp)
{
dpp_reset(dpp);
if (dpp->pub_asn1) {
l_free(dpp->pub_asn1);
dpp->pub_asn1 = NULL;
}
if (dpp->boot_public) {
l_ecc_point_free(dpp->boot_public);
dpp->boot_public = NULL;
}
if (dpp->boot_private) {
l_ecc_scalar_free(dpp->boot_private);
dpp->boot_private = NULL;
}
2021-12-16 19:08:47 +01:00
l_free(dpp);
}
static void dpp_send_frame_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0)
l_error("Error sending frame");
}
static void dpp_send_frame(uint64_t wdev_id, struct iovec *iov, size_t iov_len,
uint32_t freq)
{
struct l_genl_msg *msg;
msg = l_genl_msg_new_sized(NL80211_CMD_FRAME, 512);
l_genl_msg_append_attr(msg, NL80211_ATTR_WDEV, 8, &wdev_id);
l_genl_msg_append_attr(msg, NL80211_ATTR_WIPHY_FREQ, 4, &freq);
l_genl_msg_append_attr(msg, NL80211_ATTR_OFFCHANNEL_TX_OK, 0, NULL);
l_genl_msg_append_attrv(msg, NL80211_ATTR_FRAME, iov, iov_len);
l_debug("Sending frame on frequency %u", freq);
if (!l_genl_family_send(nl80211, msg, dpp_send_frame_cb, NULL, NULL))
l_error("Could not send CMD_FRAME");
}
static size_t dpp_build_header(const uint8_t *src, const uint8_t *dest,
enum dpp_frame_type type,
uint8_t buf[static 32])
{
uint8_t *ptr = buf + 24;
memset(buf, 0, 32);
l_put_le16(0x00d0, buf);
memcpy(buf + 4, dest, 6);
memcpy(buf + 10, src, 6);
memcpy(buf + 16, broadcast, 6);
*ptr++ = 0x04; /* Category: Public */
*ptr++ = 0x09; /* Action: Vendor specific usage */
memcpy(ptr, wifi_alliance_oui, 3);
ptr += 3;
*ptr++ = 0x1a; /* WiFi Alliance DPP OI type */
*ptr++ = 1; /* Cryptosuite */
*ptr++ = type;
return ptr - buf;
}
static size_t dpp_build_config_header(const uint8_t *src, const uint8_t *dest,
uint8_t diag_token,
uint8_t buf[static 37])
{
uint8_t *ptr = buf + 24;
memset(buf, 0, 37);
l_put_le16(0x00d0, buf);
memcpy(buf + 4, dest, 6);
memcpy(buf + 10, src, 6);
memcpy(buf + 16, broadcast, 6);
*ptr++ = 0x04; /* Public */
*ptr++ = 0x0a; /* Action */
*ptr++ = diag_token;
*ptr++ = IE_TYPE_ADVERTISEMENT_PROTOCOL;
*ptr++ = 8; /* len */
*ptr++ = 0x00;
*ptr++ = IE_TYPE_VENDOR_SPECIFIC;
*ptr++ = 5;
memcpy(ptr, wifi_alliance_oui, 3);
ptr += 3;
*ptr++ = 0x1a;
*ptr++ = 1;
return ptr - buf;
}
/*
* The configuration protocols use of AD components is somewhat confusing
* since the request/response frames are of a different format than the rest.
* In addition there are situations where the components length is zero yet it
* is still passed as such to AES-SIV.
*
* For the configuration request/response frames:
*
* "AAD for use with AES-SIV for protected messages in the DPP Configuration
* protocol shall consist of all octets in the Query Request and Query Response
* fields up to the first octet of the Wrapped Data attribute, which is the last
* attribute in a DPP Configuration frame. When the number of octets of AAD is
* zero, the number of components of AAD passed to AES-SIV is zero."
*
* - For configuration requests the optional query request field is not
* included, therefore no AAD data is passed. (dpp_configuration_start)
*
* - The configuration response does contain a query response field which is
* 5 bytes. (dpp_handle_config_response_frame)
*
* For the configuration result/status, the same rules are used as the
* authentication protocol. This is reiterated in section 6.4.1.
*
* - For the configuration result there is some confusion as to exactly how the
* second AAD component should be passed (since the spec specifically
* mentions using two components). There are no attributes prior to the
* wrapped data component meaning the length would be zero.
* Hostapd/wpa_supplicant pass a zero length AAD component to AES-SIV which
* does effect the resulting encryption/decryption so this is also what IWD
* will do to remain compliant with it.
*/
static void dpp_configuration_start(struct dpp_sm *dpp, const uint8_t *addr)
{
const char *json = "{\"name\":\"IWD\",\"wi-fi_tech\":\"infra\","
"\"netRole\":\"sta\"}";
struct iovec iov[3];
uint8_t hdr[37];
uint8_t attrs[512];
size_t json_len = strlen(json);
uint8_t *ptr = attrs;
l_getrandom(&dpp->diag_token, 1);
iov[0].iov_len = dpp_build_config_header(
netdev_get_address(dpp->netdev),
addr, dpp->diag_token, hdr);
iov[0].iov_base = hdr;
l_getrandom(dpp->e_nonce, dpp->nonce_len);
/* length */
ptr += 2;
/*
* "AAD for use with AES-SIV for protected messages in the DPP
* Configuration protocol shall consist of all octets in the Query
* Request and Query Response fields up to the first octet of the
* Wrapped Data attribute"
*
* In this case there is no query request/response fields, nor any
* attributes besides wrapped data meaning zero AD components.
*/
ptr += dpp_append_wrapped_data(NULL, 0, NULL, 0, ptr, sizeof(attrs),
dpp->ke, dpp->key_len, 2,
DPP_ATTR_ENROLLEE_NONCE, dpp->nonce_len, dpp->e_nonce,
DPP_ATTR_CONFIGURATION_REQUEST, json_len, json);
l_put_le16(ptr - attrs - 2, attrs);
iov[1].iov_base = attrs;
iov[1].iov_len = ptr - attrs;
dpp->state = DPP_STATE_CONFIGURING;
dpp_send_frame(dpp->wdev_id, iov, 2, dpp->current_freq);
}
static void send_config_result(struct dpp_sm *dpp, const uint8_t *to)
{
uint8_t hdr[32];
struct iovec iov[2];
uint8_t attrs[256];
uint8_t *ptr = attrs;
uint8_t zero = 0;
iov[0].iov_len = dpp_build_header(netdev_get_address(dpp->netdev), to,
DPP_FRAME_CONFIGURATION_RESULT, hdr);
iov[0].iov_base = hdr;
ptr += dpp_append_wrapped_data(hdr + 26, 6, attrs, 0, ptr,
sizeof(attrs), dpp->ke, dpp->key_len, 2,
DPP_ATTR_STATUS, 1, &zero,
DPP_ATTR_ENROLLEE_NONCE, dpp->nonce_len, dpp->e_nonce);
iov[1].iov_base = attrs;
iov[1].iov_len = ptr - attrs;
dpp_send_frame(dpp->wdev_id, iov, 2, dpp->current_freq);
}
static void dpp_write_config(struct dpp_configuration *config)
{
_auto_(l_free) char *ssid = l_malloc(config->ssid_len + 1);
_auto_(l_settings_free) struct l_settings *settings = l_settings_new();
_auto_(l_free) char *path;
memcpy(ssid, config->ssid, config->ssid_len);
ssid[config->ssid_len] = '\0';
path = storage_get_network_file_path(SECURITY_PSK, ssid);
if (l_settings_load_from_file(settings, path)) {
/* Remove any existing Security keys */
l_settings_remove_group(settings, "Security");
}
if (config->passphrase)
l_settings_set_string(settings, "Security", "Passphrase",
config->passphrase);
else if (config->psk)
l_settings_set_string(settings, "Security", "PreSharedKey",
config->psk);
l_debug("Storing credential for '%s(%s)'", ssid,
security_to_str(SECURITY_PSK));
storage_network_sync(SECURITY_PSK, ssid, settings);
}
static void dpp_handle_config_response_frame(const struct mmpdu_header *frame,
const void *body, size_t body_len,
int rssi, void *user_data)
{
struct dpp_sm *dpp = user_data;
const uint8_t *ptr = body;
uint16_t status;
uint16_t fragmented; /* Fragmented/Comeback delay field */
uint8_t adv_protocol_element[] = { 0x6C, 0x08, 0x7F };
uint8_t adv_protocol_id[] = { 0xDD, 0x05, 0x50, 0x6F,
0x9A, 0x1A, 0x01 };
uint16_t query_len;
struct dpp_attr_iter iter;
enum dpp_attribute_type type;
size_t len;
const uint8_t *data;
const char *json = NULL;
size_t json_len = 0;
int dstatus = -1;
const uint8_t *wrapped = NULL;
const uint8_t *e_nonce = NULL;
size_t wrapped_len = 0;
_auto_(l_free) uint8_t *unwrapped = NULL;
struct dpp_configuration *config;
uint8_t ad0[] = { 0x00, 0x10, 0x01, 0x00, 0x05 };
if (dpp->state != DPP_STATE_CONFIGURING)
return;
/*
* Can a configuration request come from someone other than who you
* authenticated to?
*/
if (memcmp(dpp->auth_addr, frame->address_2, 6))
return;
if (body_len < 19)
return;
ptr += 2;
if (*ptr++ != dpp->diag_token)
return;
status = l_get_le16(ptr);
ptr += 2;
if (status != 0) {
l_debug("Bad configuration status %u", status);
return;
}
fragmented = l_get_le16(ptr);
ptr += 2;
/*
* TODO: handle 0x0001 (fragmented), as well as comeback delay.
*/
if (fragmented != 0) {
l_debug("Fragmented messages not currently supported");
return;
}
if (memcmp(ptr, adv_protocol_element, sizeof(adv_protocol_element))) {
l_debug("Invalid Advertisement protocol element");
return;
}
ptr += sizeof(adv_protocol_element);
if (memcmp(ptr, adv_protocol_id, sizeof(adv_protocol_id))) {
l_debug("Invalid Advertisement protocol ID");
return;
}
ptr += sizeof(adv_protocol_id);
query_len = l_get_le16(ptr);
ptr += 2;
if (query_len > body_len - 19)
return;
dpp_attr_iter_init(&iter, ptr, query_len);
while (dpp_attr_iter_next(&iter, &type, &len, &data)) {
switch (type) {
case DPP_ATTR_STATUS:
dstatus = l_get_u8(data);
break;
case DPP_ATTR_WRAPPED_DATA:
wrapped = data;
wrapped_len = len;
break;
default:
/*
* TODO: CSR Attribute
*/
break;
}
}
if (dstatus != DPP_STATUS_OK || !wrapped) {
l_debug("Bad status or missing attributes");
return;
}
unwrapped = dpp_unwrap_attr(ad0, sizeof(ad0), NULL, 0, dpp->ke,
dpp->key_len, wrapped, wrapped_len,
&wrapped_len);
if (!unwrapped) {
l_debug("Failed to unwrap");
return;
}
dpp_attr_iter_init(&iter, unwrapped, wrapped_len);
while (dpp_attr_iter_next(&iter, &type, &len, &data)) {
switch (type) {
case DPP_ATTR_ENROLLEE_NONCE:
if (len != dpp->nonce_len)
break;
if (memcmp(data, dpp->e_nonce, dpp->nonce_len))
break;
e_nonce = data;
break;
case DPP_ATTR_CONFIGURATION_OBJECT:
json = (const char *)data;
json_len = len;
break;
default:
break;
}
}
if (!json || !e_nonce) {
l_debug("No configuration object in response");
return;
}
config = dpp_parse_configuration_object(json, json_len);
if (!config) {
l_error("Configuration object did not parse");
return;
}
dpp_write_config(config);
/*
* TODO: Depending on the info included in the configuration object a
* limited scan could be issued to get autoconnect to trigger faster.
* In addition this network may already be in past scan results and
* could be joined immediately.
*
* For now just wait for autoconnect.
*/
dpp_configuration_free(config);
send_config_result(dpp, dpp->auth_addr);
}
/*
* The Authentication protocol has a consistent use of AD components, and this
* use is defined in 6.3.1.4:
*
* "Invocations of AES-SIV in the DPP Authentication protocol that produce
* ciphertext that is part of an additional AES-SIV invocation do not use AAD;
* in other words, the number of AAD components is set to zero. All other
* invocations of AES-SIV in the DPP Authentication protocol shall pass a vector
* of AAD having two components of AAD in the following order: (1) the DPP
* header, as defined in Table 30, from the OUI field (inclusive) to the DPP
* Frame Type field (inclusive); and (2) all octets in a DPP Public Action frame
* after the DPP Frame Type field up to and including the last octet of the last
* attribute before the Wrapped Data attribute"
*
* In practice you see this as AD0 being some offset in the frame (offset to the
* OUI). For outgoing packets this is 26 bytes offset since the header is built
* manually. For incoming packets the offset is 2 bytes. The length is always
* 6 bytes for AD0.
*
* The AD1 data is always the start of the attributes, and length is the number
* of bytes from these attributes to wrapped data. e.g.
*
* ad1 = attrs
* ad1_len = ptr - attrs
*/
static void send_authenticate_response(struct dpp_sm *dpp, void *r_auth)
{
uint8_t hdr[32];
uint8_t attrs[256];
uint8_t *ptr = attrs;
uint8_t status = DPP_STATUS_OK;
uint64_t r_proto_key[L_ECC_MAX_DIGITS * 2];
uint8_t version = 2;
uint8_t r_capabilities = 0x01;
struct iovec iov[3];
uint8_t wrapped2_plaintext[dpp->key_len + 4];
uint8_t wrapped2[dpp->key_len + 16 + 8];
size_t wrapped2_len;
l_ecc_point_get_data(dpp->proto_public, r_proto_key,
sizeof(r_proto_key));
iov[0].iov_len = dpp_build_header(netdev_get_address(dpp->netdev),
dpp->auth_addr,
DPP_FRAME_AUTHENTICATION_RESPONSE, hdr);
iov[0].iov_base = hdr;
ptr += dpp_append_attr(ptr, DPP_ATTR_STATUS, &status, 1);
ptr += dpp_append_attr(ptr, DPP_ATTR_RESPONDER_BOOT_KEY_HASH,
dpp->pub_boot_hash, 32);
ptr += dpp_append_attr(ptr, DPP_ATTR_RESPONDER_PROTOCOL_KEY,
r_proto_key, dpp->key_len * 2);
ptr += dpp_append_attr(ptr, DPP_ATTR_PROTOCOL_VERSION, &version, 1);
/* Wrap up secondary data (R-Auth) */
wrapped2_len = dpp_append_attr(wrapped2_plaintext,
DPP_ATTR_RESPONDER_AUTH_TAG,
r_auth, dpp->key_len);
/*
* "Invocations of AES-SIV in the DPP Authentication protocol that
* produce ciphertext that is part of an additional AES-SIV invocation
* do not use AAD; in other words, the number of AAD components is set
* to zero.""
*/
aes_siv_encrypt(dpp->ke, dpp->key_len, wrapped2_plaintext,
dpp->key_len + 4, NULL, 0, wrapped2);
wrapped2_len += 16;
ptr += dpp_append_wrapped_data(hdr + 26, 6, attrs, ptr - attrs,
ptr, sizeof(attrs), dpp->k2, dpp->key_len, 4,
DPP_ATTR_RESPONDER_NONCE, dpp->nonce_len, dpp->r_nonce,
DPP_ATTR_INITIATOR_NONCE, dpp->nonce_len, dpp->i_nonce,
DPP_ATTR_RESPONDER_CAPABILITIES, 1, &r_capabilities,
DPP_ATTR_WRAPPED_DATA, wrapped2_len, wrapped2);
iov[1].iov_base = attrs;
iov[1].iov_len = ptr - attrs;
dpp_send_frame(netdev_get_wdev_id(dpp->netdev), iov, 2,
dpp->current_freq);
}
static void authenticate_confirm(struct dpp_sm *dpp, const uint8_t *from,
const uint8_t *body, size_t body_len)
{
struct dpp_attr_iter iter;
enum dpp_attribute_type type;
size_t len;
const uint8_t *data;
int status = -1;
const uint8_t *r_boot_hash = NULL;
const void *wrapped = NULL;
const uint8_t *i_auth = NULL;
size_t i_auth_len;
_auto_(l_free) uint8_t *unwrapped = NULL;
size_t wrapped_len = 0;
uint64_t i_auth_check[L_ECC_MAX_DIGITS];
const void *unwrap_key;
const void *ad0 = body + 2;
const void *ad1 = body + 8;
if (dpp->state != DPP_STATE_AUTHENTICATING)
return;
if (memcmp(from, dpp->auth_addr, 6))
return;
l_debug("authenticate confirm");
dpp_attr_iter_init(&iter, body + 8, body_len - 8);
while (dpp_attr_iter_next(&iter, &type, &len, &data)) {
switch (type) {
case DPP_ATTR_STATUS:
status = l_get_u8(data);
break;
case DPP_ATTR_RESPONDER_BOOT_KEY_HASH:
r_boot_hash = data;
/*
* Spec requires this, but does not mention if anything
* is to be done with it.
*/
break;
case DPP_ATTR_INITIATOR_BOOT_KEY_HASH:
/* No mutual authentication */
break;
case DPP_ATTR_WRAPPED_DATA:
wrapped = data;
wrapped_len = len;
break;
default:
break;
}
}
if (!r_boot_hash || !wrapped) {
l_debug("Attributes missing from authenticate confirm");
return;
}
/*
* "The Responder obtains the DPP Authentication Confirm frame and
* checks the value of the DPP Status field. If the value of the DPP
* Status field is STATUS_NOT_COMPATIBLE or STATUS_AUTH_FAILURE, the
* Responder unwraps the wrapped data portion of the frame using k2"
*/
if (status == DPP_STATUS_OK)
unwrap_key = dpp->ke;
else if (status == DPP_STATUS_NOT_COMPATIBLE ||
status == DPP_STATUS_AUTH_FAILURE)
unwrap_key = dpp->k2;
else
goto auth_confirm_failed;
unwrapped = dpp_unwrap_attr(ad0, 6, ad1, wrapped - 4 - ad1,
unwrap_key, dpp->key_len, wrapped, wrapped_len,
&wrapped_len);
if (!unwrapped)
goto auth_confirm_failed;
if (status != DPP_STATUS_OK) {
/*
* "If unwrapping is successful, the Responder should generate
* an alert indicating the reason for the protocol failure."
*/
l_debug("Authentication failed due to status %s",
status == DPP_STATUS_NOT_COMPATIBLE ?
"NOT_COMPATIBLE" : "AUTH_FAILURE");
goto auth_confirm_failed;
}
dpp_attr_iter_init(&iter, unwrapped, wrapped_len);
while (dpp_attr_iter_next(&iter, &type, &len, &data)) {
switch (type) {
case DPP_ATTR_INITIATOR_AUTH_TAG:
i_auth = data;
i_auth_len = len;
break;
case DPP_ATTR_RESPONDER_NONCE:
/* Only if error */
break;
default:
break;
}
}
if (!i_auth || i_auth_len != dpp->key_len) {
l_debug("I-Auth missing from wrapped data");
goto auth_confirm_failed;
}
dpp_derive_i_auth(dpp->r_nonce, dpp->i_nonce, dpp->nonce_len,
dpp->proto_public, dpp->i_proto_public,
dpp->boot_public, i_auth_check);
if (memcmp(i_auth, i_auth_check, i_auth_len)) {
l_error("I-Auth did not verify");
goto auth_confirm_failed;
}
l_debug("Authentication successful");
dpp_configuration_start(dpp, from);
return;
auth_confirm_failed:
dpp->state = DPP_STATE_PRESENCE;
dpp_free_auth_data(dpp);
}
static void dpp_auth_request_failed(struct dpp_sm *dpp,
enum dpp_status status,
void *k1)
{
uint8_t hdr[32];
uint8_t attrs[128];
uint8_t *ptr = attrs;
uint8_t version = 2;
uint8_t r_capabilities = 0x01;
uint8_t s = status;
struct iovec iov[2];
iov[0].iov_len = dpp_build_header(netdev_get_address(dpp->netdev),
dpp->auth_addr,
DPP_FRAME_AUTHENTICATION_RESPONSE, hdr);
iov[0].iov_base = hdr;
ptr += dpp_append_attr(ptr, DPP_ATTR_STATUS, &s, 1);
ptr += dpp_append_attr(ptr, DPP_ATTR_RESPONDER_BOOT_KEY_HASH,
dpp->pub_boot_hash, 32);
ptr += dpp_append_attr(ptr, DPP_ATTR_PROTOCOL_VERSION, &version, 1);
ptr += dpp_append_wrapped_data(hdr + 26, 6, attrs, ptr - attrs,
ptr, sizeof(attrs) - (ptr - attrs), k1, dpp->key_len, 2,
DPP_ATTR_INITIATOR_NONCE, dpp->nonce_len, dpp->i_nonce,
DPP_ATTR_RESPONDER_CAPABILITIES, 1, &r_capabilities);
iov[1].iov_base = attrs;
iov[1].iov_len = ptr - attrs;
dpp_send_frame(netdev_get_wdev_id(dpp->netdev), iov, 2,
dpp->current_freq);
}
static void authenticate_request(struct dpp_sm *dpp, const uint8_t *from,
const uint8_t *body, size_t body_len)
{
struct dpp_attr_iter iter;
enum dpp_attribute_type type;
size_t len;
const uint8_t *data;
const uint8_t *r_boot = NULL;
const uint8_t *i_boot = NULL;
const uint8_t *i_proto = NULL;
const void *wrapped = NULL;
const uint8_t *i_nonce = NULL;
size_t r_boot_len = 0, i_proto_len = 0, wrapped_len = 0;
size_t i_nonce_len = 0;
_auto_(l_free) uint8_t *unwrapped = NULL;
_auto_(l_ecc_scalar_free) struct l_ecc_scalar *m = NULL;
_auto_(l_ecc_scalar_free) struct l_ecc_scalar *n = NULL;
uint64_t k1[L_ECC_MAX_DIGITS];
uint64_t r_auth[L_ECC_MAX_DIGITS];
const void *ad0 = body + 2;
const void *ad1 = body + 8;
if (dpp->state != DPP_STATE_PRESENCE)
return;
l_debug("authenticate request");
dpp_attr_iter_init(&iter, body + 8, body_len - 8);
while (dpp_attr_iter_next(&iter, &type, &len, &data)) {
switch (type) {
case DPP_ATTR_INITIATOR_BOOT_KEY_HASH:
i_boot = data;
/*
* This attribute is required by the spec, but only
* used for mutual authentication.
*/
break;
case DPP_ATTR_RESPONDER_BOOT_KEY_HASH:
r_boot = data;
r_boot_len = len;
break;
case DPP_ATTR_INITIATOR_PROTOCOL_KEY:
i_proto = data;
i_proto_len = len;
break;
case DPP_ATTR_WRAPPED_DATA:
/* I-Nonce/I-Capabilities part of wrapped data */
wrapped = data;
wrapped_len = len;
break;
/* Optional attributes */
case DPP_ATTR_PROTOCOL_VERSION:
if (l_get_u8(data) != 2) {
l_debug("Protocol version did not match");
return;
}
break;
/*
* TODO: Go on this channel for remainder of auth protocol.
*
* "the Responder determines whether it can use the requested
* channel for the following exchanges. If so, it sends the DPP
* Authentication Response frame on that channel. If not, it
* discards the DPP Authentication Request frame without
* replying to it."
*
* For the time being this feature is not being implemented and
* the frame will be dropped.
*/
case DPP_ATTR_CHANNEL:
return;
default:
break;
}
}
if (!r_boot || !i_boot || !i_proto || !wrapped)
goto auth_request_failed;
if (r_boot_len != 32 || memcmp(dpp->pub_boot_hash,
r_boot, r_boot_len)) {
l_debug("Responder boot key hash failed to verify");
goto auth_request_failed;
}
dpp->i_proto_public = l_ecc_point_from_data(dpp->curve,
L_ECC_POINT_TYPE_FULL,
i_proto, i_proto_len);
if (!dpp->i_proto_public) {
l_debug("Initiators protocol key invalid");
goto auth_request_failed;
}
m = dpp_derive_k1(dpp->i_proto_public, dpp->boot_private, k1);
if (!m)
goto auth_request_failed;
unwrapped = dpp_unwrap_attr(ad0, 6, ad1, wrapped - 4 - ad1,
k1, dpp->key_len, wrapped, wrapped_len, &wrapped_len);
if (!unwrapped)
goto auth_request_failed;
dpp_attr_iter_init(&iter, unwrapped, wrapped_len);
while (dpp_attr_iter_next(&iter, &type, &len, &data)) {
switch (type) {
case DPP_ATTR_INITIATOR_NONCE:
i_nonce = data;
i_nonce_len = len;
break;
case DPP_ATTR_INITIATOR_CAPABILITIES:
/*
* "If the Responder is not capable of supporting the
* role indicated by the Initiator, it shall respond
* with a DPP Authentication Response frame indicating
* failure by adding the DPP Status field set to
* STATUS_NOT_COMPATIBLE"
*/
if (!(l_get_u8(data) & 0x2)) {
l_debug("Initiator is not configurator");
dpp_auth_request_failed(dpp,
DPP_STATUS_NOT_COMPATIBLE, k1);
goto auth_request_failed;
}
break;
default:
break;
}
}
if (i_nonce_len != dpp->nonce_len) {
l_debug("I-Nonce has unexpected length %lu", i_nonce_len);
goto auth_request_failed;
}
memcpy(dpp->i_nonce, i_nonce, i_nonce_len);
/* Derive keys k2, ke, and R-Auth for authentication response */
l_ecdh_generate_key_pair(dpp->curve, &dpp->proto_private,
&dpp->proto_public);
n = dpp_derive_k2(dpp->i_proto_public, dpp->proto_private, dpp->k2);
if (!n)
goto auth_request_failed;
l_getrandom(dpp->r_nonce, dpp->nonce_len);
if (!dpp_derive_ke(dpp->i_nonce, dpp->r_nonce, m, n, dpp->ke))
goto auth_request_failed;
if (!dpp_derive_r_auth(dpp->i_nonce, dpp->r_nonce, dpp->nonce_len,
dpp->i_proto_public, dpp->proto_public,
dpp->boot_public, r_auth))
goto auth_request_failed;
memcpy(dpp->auth_addr, from, 6);
dpp->state = DPP_STATE_AUTHENTICATING;
send_authenticate_response(dpp, r_auth);
return;
auth_request_failed:
dpp->state = DPP_STATE_PRESENCE;
dpp_free_auth_data(dpp);
}
static void dpp_handle_auth_frame(const struct mmpdu_header *frame,
const void *body, size_t body_len,
int rssi, void *user_data)
{
struct dpp_sm *dpp = user_data;
const uint8_t *ptr;
/*
* Both handlers offset by 8 bytes to reach the beginning of the DPP
* attributes. Easier checking this in one place, which also covers the
* frame type byte.
*/
if (body_len < 8)
return;
ptr = body + 7;
switch (*ptr) {
case DPP_FRAME_AUTHENTICATION_REQUEST:
authenticate_request(dpp, frame->address_2, body, body_len);
break;
case DPP_FRAME_AUTHENTICATION_CONFIRM:
authenticate_confirm(dpp, frame->address_2, body, body_len);
break;
default:
l_debug("Unhandled DPP frame %u", *ptr);
break;
}
}
static void dpp_presence_announce(struct dpp_sm *dpp)
{
struct netdev *netdev = dpp->netdev;
uint8_t hdr[32];
uint8_t attrs[32 + 4];
uint8_t hash[32];
uint8_t *ptr = attrs;
const uint8_t *addr = netdev_get_address(netdev);
struct iovec iov[2];
iov[0].iov_len = dpp_build_header(addr, broadcast,
DPP_FRAME_PRESENCE_ANNOUNCEMENT, hdr);
iov[0].iov_base = hdr;
dpp_hash(L_CHECKSUM_SHA256, hash, 2, "chirp", strlen("chirp"),
dpp->pub_asn1, dpp->pub_asn1_len);
ptr += dpp_append_attr(ptr, DPP_ATTR_RESPONDER_BOOT_KEY_HASH, hash, 32);
iov[1].iov_base = attrs;
iov[1].iov_len = ptr - attrs;
l_debug("Sending presense annoucement on frequency %u and waiting %u",
dpp->current_freq, dpp->dwell);
dpp_send_frame(netdev_get_wdev_id(netdev), iov, 2, dpp->current_freq);
}
static void dpp_roc_started(void *user_data)
{
struct dpp_sm *dpp = user_data;
dpp_presence_announce(dpp);
}
2021-12-16 19:08:47 +01:00
static void dpp_create(struct netdev *netdev)
{
struct l_dbus *dbus = dbus_get_bus();
struct dpp_sm *dpp = l_new(struct dpp_sm, 1);
uint8_t dpp_prefix[] = { 0x04, 0x09, 0x50, 0x6f, 0x9a, 0x1a, 0x01 };
uint8_t dpp_conf_response_prefix[] = { 0x04, 0x0b };
2021-12-16 19:08:47 +01:00
dpp->netdev = netdev;
dpp->state = DPP_STATE_NOTHING;
dpp->wdev_id = netdev_get_wdev_id(netdev);
dpp->curve = l_ecc_curve_from_ike_group(19);
dpp->key_len = l_ecc_curve_get_scalar_bytes(dpp->curve);
dpp->nonce_len = dpp_nonce_len_from_key_len(dpp->key_len);
l_ecdh_generate_key_pair(dpp->curve, &dpp->boot_private,
&dpp->boot_public);
dpp->pub_asn1 = dpp_point_to_asn1(dpp->boot_public, &dpp->pub_asn1_len);
dpp_hash(L_CHECKSUM_SHA256, dpp->pub_boot_hash, 1,
dpp->pub_asn1, dpp->pub_asn1_len);
2021-12-16 19:08:47 +01:00
l_dbus_object_add_interface(dbus, netdev_get_path(netdev),
IWD_DPP_INTERFACE, dpp);
frame_watch_add(netdev_get_wdev_id(netdev), 0, 0x00d0, dpp_prefix,
sizeof(dpp_prefix), dpp_handle_auth_frame,
dpp, NULL);
frame_watch_add(netdev_get_wdev_id(netdev), 0, 0x00d0,
dpp_conf_response_prefix,
sizeof(dpp_conf_response_prefix),
dpp_handle_config_response_frame, dpp, NULL);
2021-12-16 19:08:47 +01:00
}
static void dpp_netdev_watch(struct netdev *netdev,
enum netdev_watch_event event, void *userdata)
{
switch (event) {
case NETDEV_WATCH_EVENT_NEW:
case NETDEV_WATCH_EVENT_UP:
if (netdev_get_iftype(netdev) == NETDEV_IFTYPE_STATION &&
netdev_get_is_up(netdev))
dpp_create(netdev);
break;
case NETDEV_WATCH_EVENT_DEL:
case NETDEV_WATCH_EVENT_DOWN:
l_dbus_object_remove_interface(dbus_get_bus(),
netdev_get_path(netdev),
IWD_DPP_INTERFACE);
break;
default:
break;
}
}
static void dpp_presence_timeout(int error, void *user_data)
{
struct dpp_sm *dpp = user_data;
/*
* If cancelled this is likely due to netdev going down or from Stop().
* Otherwise there was some other problem which is probably not
* recoverable.
*/
if (error == -ECANCELED)
return;
else if (error < 0)
goto protocol_failed;
switch (dpp->state) {
case DPP_STATE_PRESENCE:
break;
case DPP_STATE_NOTHING:
/* Protocol already terminated */
return;
case DPP_STATE_AUTHENTICATING:
case DPP_STATE_CONFIGURING:
/*
* TODO: If either the auth or config protocol is running we
* need to stay on channel until the specified timeouts.
* Unfortunately the kernel makes this very inconvenient since
* there is no way to stay on channel indefinitely or any way
* of knowing what duration the kernel/card actually chooses.
*
* For now just treat this as a failure.
*/
goto protocol_failed;
}
dpp->freqs_idx++;
if (dpp->freqs_idx >= dpp->freqs_len) {
l_debug("Max retries on presence announcements");
dpp->freqs_idx = 0;
}
dpp->current_freq = dpp->freqs[dpp->freqs_idx];
l_debug("Presence timeout, moving to next frequency %u, duration %u",
dpp->current_freq, dpp->dwell);
dpp->offchannel_id = offchannel_start(netdev_get_wdev_id(dpp->netdev),
dpp->current_freq, dpp->dwell, dpp_roc_started,
dpp, dpp_presence_timeout);
return;
protocol_failed:
dpp_reset(dpp);
return;
}
/*
* EasyConnect 2.0 - 6.2.2
*/
static uint32_t *dpp_add_default_channels(struct dpp_sm *dpp, size_t *len_out)
{
struct wiphy *wiphy = wiphy_find_by_wdev(
netdev_get_wdev_id(dpp->netdev));
const struct scan_freq_set *list = wiphy_get_supported_freqs(wiphy);
uint32_t freq;
if (!dpp->presence_list)
dpp->presence_list = scan_freq_set_new();
scan_freq_set_add(dpp->presence_list, band_channel_to_freq(6,
BAND_FREQ_2_4_GHZ));
/*
* "5 GHz: Channel 44 (5.220 GHz) if local regulations permit operation
* only in the 5.150 - 5.250 GHz band and Channel 149 (5.745 GHz)
* otherwise"
*/
freq = band_channel_to_freq(149, BAND_FREQ_5_GHZ);
if (scan_freq_set_contains(list, freq))
scan_freq_set_add(dpp->presence_list, freq);
else
scan_freq_set_add(dpp->presence_list,
band_channel_to_freq(44, BAND_FREQ_5_GHZ));
/* TODO: 60GHz: Channel 2 */
return scan_freq_set_to_fixed_array(dpp->presence_list, len_out);
}
/*
* TODO: There is an entire procedure defined in the spec where you increase
* the ROC timeout with each unsuccessful iteration of channels, wait on channel
* for long periods of time etc. Due to offchannel issues in the kernel this
* procedure is not being fully implemented. In reality doing this would result
* in quite terrible DPP performance anyways.
*/
static void dpp_start_presence(struct dpp_sm *dpp, uint32_t *limit_freqs,
size_t limit_len)
{
uint32_t max_roc = wiphy_get_max_roc_duration(
wiphy_find_by_wdev(dpp->wdev_id));
if (2000 < max_roc)
max_roc = 2000;
if (limit_freqs) {
dpp->freqs = l_memdup(limit_freqs, sizeof(uint32_t) * limit_len);
dpp->freqs_len = limit_len;
} else
dpp->freqs = dpp_add_default_channels(dpp, &dpp->freqs_len);
dpp->dwell = max_roc;
dpp->freqs_idx = 0;
dpp->current_freq = dpp->freqs[0];
dpp->offchannel_id = offchannel_start(netdev_get_wdev_id(dpp->netdev),
dpp->current_freq, dpp->dwell, dpp_roc_started,
dpp, dpp_presence_timeout);
}
2021-12-16 19:08:47 +01:00
static struct l_dbus_message *dpp_dbus_start_enrollee(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct dpp_sm *dpp = user_data;
uint32_t freq = band_channel_to_freq(6, BAND_FREQ_2_4_GHZ);
struct l_dbus_message *reply;
if (dpp->state != DPP_STATE_NOTHING)
return dbus_error_busy(message);
dpp->uri = dpp_generate_uri(dpp->pub_asn1, dpp->pub_asn1_len, 2,
netdev_get_address(dpp->netdev), &freq,
1, NULL, NULL);
dpp->state = DPP_STATE_PRESENCE;
l_debug("DPP Start Enrollee: %s", dpp->uri);
/*
* Going off spec here. Select a single channel to send presence
* announcements on. This will be advertised in the URI. The full
* presence procedure can be implemented if it is ever needed.
*/
dpp_start_presence(dpp, &freq, 1);
reply = l_dbus_message_new_method_return(message);
l_dbus_message_set_arguments(reply, "s", dpp->uri);
return reply;
2021-12-16 19:08:47 +01:00
}
static struct l_dbus_message *dpp_dbus_stop(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct dpp_sm *dpp = user_data;
dpp_reset(dpp);
return l_dbus_message_new_method_return(message);
2021-12-16 19:08:47 +01:00
}
static void dpp_setup_interface(struct l_dbus_interface *interface)
{
l_dbus_interface_method(interface, "StartEnrollee", 0,
dpp_dbus_start_enrollee, "s", "", "uri");
l_dbus_interface_method(interface, "Stop", 0,
dpp_dbus_stop, "", "");
}
static void dpp_destroy_interface(void *user_data)
{
struct dpp_sm *dpp = user_data;
dpp_free(dpp);
}
static int dpp_init(void)
{
nl80211 = l_genl_family_new(iwd_get_genl(), NL80211_GENL_NAME);
if (!nl80211) {
l_error("Failed to obtain nl80211");
return -EIO;
}
2021-12-16 19:08:47 +01:00
netdev_watch = netdev_watch_add(dpp_netdev_watch, NULL, NULL);
l_dbus_register_interface(dbus_get_bus(), IWD_DPP_INTERFACE,
dpp_setup_interface,
dpp_destroy_interface, false);
return 0;
}
static void dpp_exit(void)
{
l_debug("");
netdev_watch_remove(netdev_watch);
}
IWD_MODULE(dpp, dpp_init, dpp_exit);
IWD_MODULE_DEPENDS(dpp, netdev);