iwd/src/eap-ttls.c

1070 lines
24 KiB
C
Raw Normal View History

/*
*
* Wireless daemon for Linux
*
2018-09-21 01:38:25 +02:00
* Copyright (C) 2013-2018 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <ell/ell.h>
#include <ell/tls-private.h>
2018-10-01 23:55:35 +02:00
#include <ell/private.h>
#include "eap.h"
#include "eap-private.h"
2018-09-21 22:17:57 +02:00
#include "eap-tls-common.h"
#define TTLS_AVP_HEADER_LEN 8
#define TTLS_AVP_LEN_MASK 0xFFFFFF
enum ttls_avp_flag {
TTLS_AVP_FLAG_M = 0x40,
TTLS_AVP_FLAG_V = 0x80,
TTLS_AVP_FLAG_MASK = 0xFF,
};
enum radius_attr {
RADIUS_ATTR_EAP_MESSAGE = 79,
};
struct avp_builder {
2018-10-01 23:55:35 +02:00
uint32_t capacity;
uint8_t *buf;
2018-10-01 23:55:35 +02:00
uint32_t pos;
uint8_t *avp_start;
};
2018-10-01 23:55:35 +02:00
static uint8_t *avp_builder_reserve(struct avp_builder *builder,
uint32_t alignment, size_t len)
{
2018-10-01 23:55:35 +02:00
size_t aligned_pos = align_len(builder->pos, alignment);
size_t end = aligned_pos + len;
2018-10-01 23:55:35 +02:00
if (end > builder->capacity) {
builder->buf = l_realloc(builder->buf, end);
builder->capacity = end;
}
2018-10-01 23:55:35 +02:00
if (aligned_pos - builder->pos > 0)
memset(builder->buf + builder->pos, 0,
aligned_pos - builder->pos);
2018-10-01 23:55:35 +02:00
builder->pos = end;
2018-10-01 23:55:35 +02:00
return builder->buf + aligned_pos;
}
2018-10-01 23:55:35 +02:00
static bool avp_builder_finalize_avp(struct avp_builder *builder)
{
2018-10-01 23:55:35 +02:00
uint8_t *p;
uint32_t len;
2018-10-01 23:55:35 +02:00
if (!builder->avp_start)
return false;
2018-10-01 23:55:35 +02:00
p = builder->buf + builder->pos;
2018-10-01 23:55:35 +02:00
len = l_get_be32(builder->avp_start + 4);
len |= p - builder->avp_start;
l_put_be32(len, builder->avp_start + 4);
2018-10-01 23:55:35 +02:00
builder->avp_start = 0;
2018-10-01 23:55:35 +02:00
return true;
}
static bool avp_builder_start_avp(struct avp_builder *builder,
enum radius_attr type,
bool mandatory, uint32_t vendor_id)
{
2018-10-01 23:55:35 +02:00
uint32_t flags;
2018-10-01 23:55:35 +02:00
if (builder->avp_start)
return false;
2018-10-01 23:55:35 +02:00
builder->avp_start = avp_builder_reserve(builder, 4,
TTLS_AVP_HEADER_LEN +
(vendor_id ? 4 : 0));
l_put_be32(type, builder->avp_start);
2018-10-01 23:55:35 +02:00
flags = 0;
if (mandatory)
2018-10-01 23:55:35 +02:00
flags |= TTLS_AVP_FLAG_M;
if (vendor_id) {
2018-10-01 23:55:35 +02:00
flags |= TTLS_AVP_FLAG_V;
l_put_be32(vendor_id, builder->avp_start + TTLS_AVP_HEADER_LEN);
}
2018-10-01 23:55:35 +02:00
l_put_be32(flags << 24, builder->avp_start + 4);
return true;
}
static struct avp_builder *avp_builder_new(size_t capacity)
{
struct avp_builder *builder;
if (!capacity)
return NULL;
builder = l_new(struct avp_builder, 1);
builder->buf = l_malloc(capacity);
memset(builder->buf, 0, capacity);
builder->capacity = capacity;
return builder;
}
static uint8_t *avp_builder_free(struct avp_builder *builder, bool free_data,
size_t *out_size)
{
uint8_t *ret;
if (free_data) {
l_free(builder->buf);
builder->buf = NULL;
}
ret = builder->buf;
if (out_size)
2018-10-01 23:55:35 +02:00
*out_size = builder->pos;
l_free(builder);
return ret;
}
2018-09-21 22:17:57 +02:00
struct avp_iter {
enum radius_attr type;
uint8_t flags;
uint32_t len;
uint32_t vendor_id;
const uint8_t *data;
const uint8_t *buf;
size_t buf_len;
size_t offset;
};
static void avp_iter_init(struct avp_iter *iter, const uint8_t *buf, size_t len)
{
iter->buf = buf;
iter->buf_len = len;
iter->offset = 0;
}
static bool avp_iter_next(struct avp_iter *iter)
{
const uint8_t *start = iter->buf + iter->offset;
const uint8_t *end = iter->buf + iter->buf_len;
enum radius_attr type;
uint32_t len;
uint8_t flags;
uint8_t pad_len;
/* Make sure we have at least the header fields */
if (iter->offset + TTLS_AVP_HEADER_LEN >= iter->buf_len)
return false;
type = l_get_be32(start);
start += 4;
len = l_get_be32(start);
start += 4;
flags = (len >> 24) & TTLS_AVP_FLAG_MASK;
len &= TTLS_AVP_LEN_MASK;
len -= TTLS_AVP_HEADER_LEN;
if (start + len > end)
return false;
if (flags & TTLS_AVP_FLAG_V) {
if (len < 4)
return false;
iter->vendor_id = l_get_be32(start);
start += 4;
len -= 4;
} else {
iter->vendor_id = 0;
}
iter->type = type;
iter->flags = flags;
iter->len = len;
iter->data = start;
if (len & 3)
pad_len = 4 - (len & 3);
else
pad_len = 0;
iter->offset = start + len + pad_len - iter->buf;
return true;
}
struct phase2_method {
void *state;
bool (*init)(struct eap_state *eap);
bool (*handle_avp)(struct eap_state *eap, enum radius_attr type,
uint32_t vendor_id, const uint8_t *data,
size_t len);
void (*destroy)(void *state);
bool (*reset)(struct eap_state *eap);
};
struct eap_ttls_state {
char *ca_cert;
char *client_cert;
char *client_key;
char *passphrase;
struct l_tls *tls;
uint8_t *rx_pkt_buf;
size_t rx_pkt_received, rx_pkt_len;
uint8_t *tx_pkt_buf;
size_t tx_pkt_len, tx_pkt_capacity, tx_pkt_offset;
struct databuf *avp_buf;
bool completed;
uint8_t negotiated_version;
struct phase2_method *phase2;
};
2018-06-08 02:53:42 +02:00
static void __eap_ttls_reset_state(struct eap_ttls_state *ttls)
{
ttls->completed = false;
l_free(ttls->rx_pkt_buf);
ttls->rx_pkt_buf = NULL;
ttls->rx_pkt_received = 0;
ttls->rx_pkt_len = 0;
l_free(ttls->tx_pkt_buf);
ttls->tx_pkt_buf = NULL;
ttls->tx_pkt_capacity = 0;
ttls->tx_pkt_len = 0;
ttls->tx_pkt_offset = 0;
databuf_free(ttls->avp_buf);
2018-06-08 02:53:42 +02:00
ttls->avp_buf = NULL;
if (ttls->tls) {
l_tls_free(ttls->tls);
ttls->tls = NULL;
}
}
static bool eap_ttls_reset_state(struct eap_state *eap)
{
struct eap_ttls_state *ttls = eap_get_data(eap);
if (ttls->phase2->reset)
ttls->phase2->reset(eap);
2018-06-08 02:53:42 +02:00
__eap_ttls_reset_state(ttls);
2018-06-08 02:53:42 +02:00
return true;
}
static void eap_ttls_free(struct eap_state *eap)
{
struct eap_ttls_state *ttls = eap_get_data(eap);
2018-06-08 02:53:42 +02:00
__eap_ttls_reset_state(ttls);
if (ttls->phase2->destroy) {
ttls->phase2->destroy(ttls->phase2->state);
ttls->phase2->state = NULL;
}
eap_set_data(eap, NULL);
l_free(ttls->ca_cert);
l_free(ttls->client_cert);
l_free(ttls->client_key);
2018-06-08 02:53:42 +02:00
if (ttls->passphrase) {
memset(ttls->passphrase, 0, strlen(ttls->passphrase));
l_free(ttls->passphrase);
}
l_free(ttls);
}
#define EAP_TTLS_RESPONSE_HEADER_LEN 10
#define EAP_TTLS_FLAG_L (1 << 7)
#define EAP_TTLS_FLAG_M (1 << 6)
#define EAP_TTLS_FLAG_S (1 << 5)
#define EAP_TTLS_FLAG_MASK \
(EAP_TTLS_FLAG_L | EAP_TTLS_FLAG_M | EAP_TTLS_FLAG_S)
static void eap_ttls_phase2_eap_send_response(const uint8_t *data, size_t len,
void *user_data)
{
struct eap_state *eap = user_data;
struct eap_ttls_state *ttls = eap_get_data(eap);
struct avp_builder *builder;
uint8_t *msg_data;
size_t msg_data_len;
builder = avp_builder_new(TTLS_AVP_HEADER_LEN + len);
avp_builder_start_avp(builder, RADIUS_ATTR_EAP_MESSAGE, true, 0);
2018-10-01 23:55:36 +02:00
memcpy(avp_builder_reserve(builder, 1, len), data, len);
avp_builder_finalize_avp(builder);
msg_data = avp_builder_free(builder, false, &msg_data_len);
l_tls_write(ttls->tls, msg_data, msg_data_len);
l_free(msg_data);
}
static void eap_ttls_phase2_eap_complete(enum eap_result result,
void *user_data)
{
struct eap_state *eap = user_data;
struct eap_ttls_state *ttls = eap_get_data(eap);
ttls->completed = true;
}
static bool eap_ttls_phase2_eap_load_settings(struct eap_state *eap,
struct l_settings *settings,
const char *prefix)
{
struct eap_ttls_state *ttls = eap_get_data(eap);
ttls->phase2->state = eap_new(eap_ttls_phase2_eap_send_response,
eap_ttls_phase2_eap_complete,
eap);
if (!ttls->phase2->state) {
l_error("Could not create the TTLS Phase 2 EAP instance");
return false;
}
if (!eap_load_settings(ttls->phase2->state, settings, prefix)) {
eap_free(ttls->phase2->state);
return false;
}
return true;
}
static bool eap_ttls_phase2_eap_init(struct eap_state *eap)
{
struct eap_ttls_state *ttls = eap_get_data(eap);
uint8_t packet[5] = { EAP_CODE_REQUEST, 0, 0, 5, EAP_TYPE_IDENTITY };
if (!ttls->phase2->state)
return false;
/*
* Consume a fake Request/Identity packet so that the EAP instance
* starts with its Response/Identity right away.
*/
eap_rx_packet(ttls->phase2->state, packet, sizeof(packet));
return true;
}
static bool eap_ttls_phase2_eap_handle_avp(struct eap_state *eap,
enum radius_attr type,
uint32_t vendor_id,
const uint8_t *data,
size_t len)
{
struct eap_ttls_state *ttls = eap_get_data(eap);
if (type != RADIUS_ATTR_EAP_MESSAGE)
return false;
eap_rx_packet(ttls->phase2->state, data, len);
return true;
}
static void eap_ttls_phase2_eap_destroy(void *state)
{
if (!state)
return;
eap_reset(state);
eap_free(state);
}
static bool eap_ttls_phase2_eap_reset(struct eap_state *eap)
{
struct eap_ttls_state *ttls = eap_get_data(eap);
if (!ttls->phase2->state)
return false;
return eap_reset(ttls->phase2->state);
}
static struct phase2_method phase2_eap = {
.init = eap_ttls_phase2_eap_init,
.handle_avp = eap_ttls_phase2_eap_handle_avp,
.destroy = eap_ttls_phase2_eap_destroy,
.reset = eap_ttls_phase2_eap_reset,
};
static uint8_t *eap_ttls_tx_buf_reserve(struct eap_ttls_state *ttls,
size_t size)
{
int offset = ttls->tx_pkt_offset + ttls->tx_pkt_len;
size_t end_offset = offset + size;
ttls->tx_pkt_len += size;
if (end_offset > ttls->tx_pkt_capacity) {
ttls->tx_pkt_capacity = end_offset + 1024;
ttls->tx_pkt_buf =
l_realloc(ttls->tx_pkt_buf, ttls->tx_pkt_capacity);
}
return ttls->tx_pkt_buf + offset;
}
static void eap_ttls_tx_cb(const uint8_t *data, size_t len, void *user_data)
{
struct eap_state *eap = user_data;
struct eap_ttls_state *ttls = eap_get_data(eap);
memcpy(eap_ttls_tx_buf_reserve(ttls, len), data, len);
}
static void eap_ttls_data_cb(const uint8_t *data, size_t data_len,
void *user_data)
{
struct eap_state *eap = user_data;
struct eap_ttls_state *ttls = eap_get_data(eap);
if (!ttls->avp_buf)
ttls->avp_buf = databuf_new(data_len);
databuf_append(ttls->avp_buf, data, data_len);
}
static void eap_ttls_ready_cb(const char *peer_identity, void *user_data)
{
struct eap_state *eap = user_data;
struct eap_ttls_state *ttls = eap_get_data(eap);
uint8_t msk_emsk[128];
uint8_t seed[64];
/* TODO: if we have a CA certificate require non-NULL peer_identity */
/*
* TTLSv0 seems to assume that the TLS handshake phase authenticates
* the server to the client enough that the inner method success or
* failure status doesn't matter as long as the server lets us in,
* although in various places it says the client may also have a
* specific policy.
*/
eap_method_success(eap);
/* MSK, EMSK and challenge derivation */
memcpy(seed + 0, ttls->tls->pending.client_random, 32);
memcpy(seed + 32, ttls->tls->pending.server_random, 32);
tls_prf_get_bytes(ttls->tls, L_CHECKSUM_SHA256, 32,
ttls->tls->pending.master_secret,
sizeof(ttls->tls->pending.master_secret),
"ttls keying material", seed, 64,
msk_emsk, 128);
memset(seed, 0, 64);
eap_set_key_material(eap, msk_emsk + 0, 64, msk_emsk + 64, 64,
NULL, 0);
if (!ttls->phase2->state)
goto err;
if (ttls->phase2->init)
ttls->phase2->init(eap);
return;
err:
l_tls_close(ttls->tls);
}
static void eap_ttls_disconnect_cb(enum l_tls_alert_desc reason,
bool remote, void *user_data)
{
struct eap_state *eap = user_data;
struct eap_ttls_state *ttls = eap_get_data(eap);
ttls->completed = true;
}
2018-09-21 22:17:57 +02:00
static void eap_ttls_handle_payload(struct eap_state *eap,
const uint8_t *pkt,
size_t pkt_len)
{
struct eap_ttls_state *ttls = eap_get_data(eap);
struct avp_iter iter;
l_tls_handle_rx(ttls->tls, pkt, pkt_len);
if (!ttls->phase2->handle_avp)
return;
/* Plaintext phase two data is stored into ttls->avp_buf */
if (!ttls->avp_buf)
return;
avp_iter_init(&iter, ttls->avp_buf->data, ttls->avp_buf->len);
2018-09-21 22:17:57 +02:00
while (avp_iter_next(&iter)) {
if (ttls->phase2->handle_avp(eap, iter.type, iter.vendor_id,
iter.data, iter.len))
continue;
if (iter.flags & TTLS_AVP_FLAG_M)
l_tls_close(ttls->tls);
}
databuf_free(ttls->avp_buf);
ttls->avp_buf = NULL;
2018-09-21 22:17:57 +02:00
}
static void eap_ttls_handle_request(struct eap_state *eap,
const uint8_t *pkt, size_t len)
{
uint8_t flags;
uint32_t total_len;
struct eap_ttls_state *ttls = eap_get_data(eap);
size_t fragment_len;
uint8_t *tx_buf;
if (len < 1) {
l_error("EAP-TTLS request too short");
goto err;
}
flags = pkt[0];
pkt += 1;
len -= 1;
if (!(flags & EAP_TTLS_FLAG_S) &&
(flags & 7) != ttls->negotiated_version) {
l_error("Non-zero EAP-TTLS version: %i", flags & 7);
goto err;
}
/* Check if we're expecting a fragment ACK */
if (ttls->tx_pkt_len) {
if ((flags & EAP_TTLS_FLAG_MASK) || len) {
l_error("EAP-TTLS request is not an ACK");
goto err;
}
/* Send next response fragment, prepend the 6-byte header */
tx_buf = &ttls->tx_pkt_buf[ttls->tx_pkt_offset - 6];
fragment_len = eap_get_mtu(eap) - 6;
tx_buf[5] = EAP_TTLS_FLAG_M |
ttls->negotiated_version; /* Flags */
if (ttls->tx_pkt_len <= fragment_len) {
fragment_len = ttls->tx_pkt_len;
tx_buf[5] = ttls->negotiated_version; /* Flags */
}
eap_send_response(eap, EAP_TYPE_TTLS,
tx_buf, fragment_len + 6);
ttls->tx_pkt_len -= fragment_len;
ttls->tx_pkt_offset += fragment_len;
return;
}
/* Complain if S bit is not correct */
if (!(flags & EAP_TTLS_FLAG_S) == !ttls->tls) {
l_error("EAP-TTLS request S flag invalid");
goto err;
}
/* Method can't be restarted */
if ((flags & EAP_TTLS_FLAG_S) && ttls->completed) {
l_error("EAP-TTLS start after completed");
goto err;
}
if (flags & EAP_TTLS_FLAG_L) {
if (len < 7) {
l_error("EAP-TTLS request with L flag too short");
goto err;
}
total_len = l_get_be32(pkt);
pkt += 4;
len -= 4;
if (ttls->rx_pkt_buf) {
l_error("EAP-TTLS request L flag invalid");
l_free(ttls->rx_pkt_buf);
ttls->rx_pkt_buf = NULL;
goto err;
}
if (!(flags & EAP_TTLS_FLAG_M) && total_len != len) {
l_error("EAP-TTLS request Length value invalid");
goto err;
}
}
if (!ttls->rx_pkt_buf && (flags & EAP_TTLS_FLAG_M)) {
if (!(flags & EAP_TTLS_FLAG_L)) {
l_error("EAP-TTLS request 1st fragment with no length");
goto err;
}
ttls->rx_pkt_buf = l_malloc(total_len);
ttls->rx_pkt_len = total_len;
ttls->rx_pkt_received = 0;
}
if (ttls->rx_pkt_buf) {
if (
((flags & EAP_TTLS_FLAG_M) &&
ttls->rx_pkt_received + len >=
ttls->rx_pkt_len) ||
(!(flags & EAP_TTLS_FLAG_M) &&
ttls->rx_pkt_received + len !=
ttls->rx_pkt_len)) {
l_error("EAP-TTLS request fragment length mismatch");
l_free(ttls->rx_pkt_buf);
ttls->rx_pkt_buf = NULL;
goto err;
}
memcpy(ttls->rx_pkt_buf + ttls->rx_pkt_received, pkt, len);
ttls->rx_pkt_received += len;
}
if (flags & EAP_TTLS_FLAG_M) {
uint8_t buf[6];
/* Send an empty response as ACK */
buf[5] = 0;
eap_send_response(eap, EAP_TYPE_TTLS, buf, 6);
return;
}
if (ttls->rx_pkt_buf) {
pkt = ttls->rx_pkt_buf;
len = ttls->rx_pkt_len;
}
eap_ttls_tx_buf_reserve(ttls, EAP_TTLS_RESPONSE_HEADER_LEN);
ttls->tx_pkt_offset = ttls->tx_pkt_len;
ttls->tx_pkt_len = 0;
if (flags & EAP_TTLS_FLAG_S) {
ttls->tls = l_tls_new(false, eap_ttls_data_cb,
eap_ttls_tx_cb, eap_ttls_ready_cb,
eap_ttls_disconnect_cb, eap);
if (!ttls->tls) {
l_error("Creating a TLS instance failed");
goto err;
}
l_tls_set_auth_data(ttls->tls, ttls->client_cert,
ttls->client_key, ttls->passphrase);
if (ttls->ca_cert)
l_tls_set_cacert(ttls->tls, ttls->ca_cert);
/*
* RFC5281 section 9.1: "For all packets other than a
* Start packet, the Data field consists of the raw
* TLS message sequence or fragment thereof. For a
* Start packet, the Data field may optionally
* contain an AVP sequence."
* We ignore the unencrypted AVP sequence if there is
* any.
*/
len = 0;
}
if (len)
2018-09-21 22:17:57 +02:00
eap_ttls_handle_payload(eap, pkt, len);
if (ttls->rx_pkt_buf) {
l_free(ttls->rx_pkt_buf);
ttls->rx_pkt_buf = NULL;
}
/*
* Note if ttls->completed && !eap->method_success we can send an empty
* response instead of passing the TLS alert.
*/
2016-11-07 22:55:17 +01:00
if (ttls->tx_pkt_len + 6 <= eap_get_mtu(eap)) {
/*
* Response fits in a single response packet, prepend the
* 6-byte header (no length) before the data.
*/
tx_buf = &ttls->tx_pkt_buf[ttls->tx_pkt_offset - 6];
tx_buf[5] = ttls->negotiated_version; /* Flags */
eap_send_response(eap, EAP_TYPE_TTLS,
tx_buf, ttls->tx_pkt_len + 6);
ttls->tx_pkt_len = 0;
} else {
/*
* Fragmentation needed, prepend the 10-byte header
* (4 EAP header + 2 response + 4 length) to build the
* initial fragment packet.
*/
tx_buf = &ttls->tx_pkt_buf[ttls->tx_pkt_offset - 10];
tx_buf[5] = EAP_TTLS_FLAG_L | EAP_TTLS_FLAG_M |
ttls->negotiated_version; /* Flags */
l_put_be32(ttls->tx_pkt_len, &tx_buf[6]);
fragment_len = eap_get_mtu(eap) - 10;
eap_send_response(eap, EAP_TYPE_TTLS,
tx_buf, fragment_len + 10);
ttls->tx_pkt_len -= fragment_len;
ttls->tx_pkt_offset += fragment_len;
}
if (ttls->completed) {
l_tls_free(ttls->tls);
ttls->tls = NULL;
if (ttls->phase2->destroy) {
ttls->phase2->destroy(ttls->phase2->state);
ttls->phase2->state = NULL;
}
}
return;
err:
ttls->completed = true;
l_tls_free(ttls->tls);
ttls->tls = NULL;
eap_method_error(eap);
}
static const struct {
const char *name;
struct phase2_method *method;
} tunneled_non_eap_methods[] = {
{ }
};
static int eap_ttls_check_tunneled_auth_settings(struct l_settings *settings,
struct l_queue *secrets,
const char *prefix,
struct l_queue **out_missing)
{
const struct eap_secret_info *secret;
char identity_key[64];
char password_key[64];
L_AUTO_FREE_VAR(char *, identity);
L_AUTO_FREE_VAR(char *, password) = NULL;
snprintf(identity_key, sizeof(identity_key), "%sIdentity", prefix);
snprintf(password_key, sizeof(password_key), "%sPassword", prefix);
identity = l_settings_get_string(settings, "Security", identity_key);
if (!identity) {
secret = l_queue_find(secrets, eap_secret_info_match,
identity_key);
if (!secret) {
eap_append_secret(out_missing,
EAP_SECRET_REMOTE_USER_PASSWORD,
identity_key, password_key, NULL,
EAP_CACHE_TEMPORARY);
}
return 0;
}
password = l_settings_get_string(settings, "Security", password_key);
if (!password) {
secret = l_queue_find(secrets, eap_secret_info_match,
password_key);
if (!secret) {
eap_append_secret(out_missing,
EAP_SECRET_REMOTE_PASSWORD,
password_key, NULL, identity,
EAP_CACHE_TEMPORARY);
}
}
return 0;
}
static int eap_ttls_check_settings(struct l_settings *settings,
struct l_queue *secrets,
const char *prefix,
struct l_queue **out_missing)
{
char setting[64], client_cert_setting[64], passphrase_setting[64];
L_AUTO_FREE_VAR(char *, path) = NULL;
L_AUTO_FREE_VAR(char *, client_cert) = NULL;
L_AUTO_FREE_VAR(char *, passphrase) = NULL;
uint8_t *cert;
size_t size;
const char *phase2_method;
uint8_t i;
snprintf(setting, sizeof(setting), "%sTTLS-CACert", prefix);
path = l_settings_get_string(settings, "Security", setting);
if (path) {
cert = l_pem_load_certificate(path, &size);
if (!cert) {
l_error("Failed to load %s", path);
return -EIO;
}
l_free(cert);
}
snprintf(client_cert_setting, sizeof(client_cert_setting),
"%sTTLS-ClientCert", prefix);
client_cert = l_settings_get_string(settings, "Security",
client_cert_setting);
if (client_cert) {
cert = l_pem_load_certificate(client_cert, &size);
if (!cert) {
l_error("Failed to load %s", client_cert);
return -EIO;
}
l_free(cert);
}
l_free(path);
snprintf(setting, sizeof(setting), "%sTTLS-ClientKey", prefix);
path = l_settings_get_string(settings, "Security", setting);
if (path && !client_cert) {
l_error("%s present but no client certificate (%s)",
setting, client_cert_setting);
return -ENOENT;
}
snprintf(passphrase_setting, sizeof(passphrase_setting),
"%sTTLS-ClientKeyPassphrase", prefix);
passphrase = l_settings_get_string(settings, "Security",
passphrase_setting);
if (!passphrase) {
const struct eap_secret_info *secret;
secret = l_queue_find(secrets, eap_secret_info_match,
passphrase_setting);
if (secret)
2018-06-14 22:58:43 +02:00
passphrase = l_strdup(secret->value);
}
if (path) {
bool encrypted;
uint8_t *priv_key;
size_t size;
priv_key = l_pem_load_private_key(path, passphrase,
&encrypted, &size);
if (!priv_key) {
if (!encrypted) {
l_error("Error loading client private key %s",
path);
return -EIO;
}
if (passphrase) {
l_error("Error loading encrypted client "
"private key %s", path);
return -EACCES;
}
/*
* We've got an encrypted key and passphrase was not
* saved in the network settings, need to request
* the passphrase.
*/
eap_append_secret(out_missing,
EAP_SECRET_LOCAL_PKEY_PASSPHRASE,
passphrase_setting, NULL, path,
EAP_CACHE_TEMPORARY);
} else {
memset(priv_key, 0, size);
l_free(priv_key);
if (passphrase && !encrypted) {
l_error("%s present but client private "
"key %s is not encrypted",
passphrase_setting, path);
return -EIO;
}
}
} else if (passphrase) {
l_error("%s present but no client private key path set (%s)",
passphrase_setting, setting);
return -ENOENT;
}
snprintf(setting, sizeof(setting), "%sTTLS-Phase2-Method", prefix);
phase2_method = l_settings_get_value(settings, "Security", setting);
snprintf(setting, sizeof(setting), "%sTTLS-Phase2-", prefix);
for (i = 0; tunneled_non_eap_methods[i].name; i++) {
if (strcmp(tunneled_non_eap_methods[i].name, phase2_method))
continue;
return eap_ttls_check_tunneled_auth_settings(settings, secrets,
setting,
out_missing);
}
return __eap_check_settings(settings, secrets, setting, false,
out_missing);
}
static bool eap_ttls_load_settings(struct eap_state *eap,
struct l_settings *settings,
const char *prefix)
{
struct eap_ttls_state *ttls;
const char *phase2_method;
char setting[64];
uint8_t i;
ttls = l_new(struct eap_ttls_state, 1);
snprintf(setting, sizeof(setting), "%sTTLS-CACert", prefix);
ttls->ca_cert = l_settings_get_string(settings, "Security", setting);
snprintf(setting, sizeof(setting), "%sTTLS-ClientCert", prefix);
ttls->client_cert = l_settings_get_string(settings,
"Security", setting);
snprintf(setting, sizeof(setting), "%sTTLS-ClientKey", prefix);
ttls->client_key = l_settings_get_string(settings, "Security", setting);
snprintf(setting, sizeof(setting), "%sTTLS-ClientKeyPassphrase",
prefix);
ttls->passphrase = l_settings_get_string(settings, "Security", setting);
snprintf(setting, sizeof(setting), "%sTTLS-Phase2-Method", prefix);
phase2_method = l_settings_get_value(settings, "Security", setting);
snprintf(setting, sizeof(setting), "%sTTLS-Phase2-", prefix);
eap_set_data(eap, ttls);
for (i = 0; tunneled_non_eap_methods[i].name; i++) {
if (strcmp(tunneled_non_eap_methods[i].name, phase2_method))
continue;
ttls->phase2 = tunneled_non_eap_methods[i].method;
break;
}
if (!ttls->phase2) {
ttls->phase2 = &phase2_eap;
if (!eap_ttls_phase2_eap_load_settings(eap, settings, setting))
goto err;
}
return true;
err:
eap_set_data(eap, NULL);
l_free(ttls->ca_cert);
l_free(ttls->client_cert);
l_free(ttls->client_key);
if (ttls->passphrase)
memset(ttls->passphrase, 0, strlen(ttls->passphrase));
l_free(ttls->passphrase);
l_free(ttls);
return false;
}
static struct eap_method eap_ttls = {
.request_type = EAP_TYPE_TTLS,
.exports_msk = true,
.name = "TTLS",
.free = eap_ttls_free,
.handle_request = eap_ttls_handle_request,
.check_settings = eap_ttls_check_settings,
.load_settings = eap_ttls_load_settings,
2018-06-08 02:53:42 +02:00
.reset_state = eap_ttls_reset_state,
};
static int eap_ttls_init(void)
{
l_debug("");
return eap_register_method(&eap_ttls);
}
static void eap_ttls_exit(void)
{
l_debug("");
eap_unregister_method(&eap_ttls);
}
EAP_METHOD_BUILTIN(eap_ttls, eap_ttls_init, eap_ttls_exit)