mirror of
https://github.com/42wim/matterbridge.git
synced 2025-01-25 03:24:31 +01:00
53cafa9f3d
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo` The default binaries are still "pure" go and uses the old way of converting. * Move lottie_convert.py conversion code to its own file * Add optional libtgsconverter * Update vendor * Apply suggestions from code review * Update bridge/helper/libtgsconverter.go Co-authored-by: Wim <wim@42.be>
211 lines
7.3 KiB
C
211 lines
7.3 KiB
C
// Copyright 2010 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// inline YUV<->RGB conversion function
|
|
//
|
|
// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
|
|
// More information at: http://en.wikipedia.org/wiki/YCbCr
|
|
// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
|
|
// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
|
|
// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
|
|
// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
|
|
//
|
|
// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
|
|
// R = 1.164 * (Y-16) + 1.596 * (V-128)
|
|
// G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
|
|
// B = 1.164 * (Y-16) + 2.018 * (U-128)
|
|
// where Y is in the [16,235] range, and U/V in the [16,240] range.
|
|
//
|
|
// The fixed-point implementation used here is:
|
|
// R = (19077 . y + 26149 . v - 14234) >> 6
|
|
// G = (19077 . y - 6419 . u - 13320 . v + 8708) >> 6
|
|
// B = (19077 . y + 33050 . u - 17685) >> 6
|
|
// where the '.' operator is the mulhi_epu16 variant:
|
|
// a . b = ((a << 8) * b) >> 16
|
|
// that preserves 8 bits of fractional precision before final descaling.
|
|
|
|
// Author: Skal (pascal.massimino@gmail.com)
|
|
|
|
#ifndef WEBP_DSP_YUV_H_
|
|
#define WEBP_DSP_YUV_H_
|
|
|
|
#include "dsp_dsp.h"
|
|
#include "dec_vp8_dec.h"
|
|
|
|
//------------------------------------------------------------------------------
|
|
// YUV -> RGB conversion
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
enum {
|
|
YUV_FIX = 16, // fixed-point precision for RGB->YUV
|
|
YUV_HALF = 1 << (YUV_FIX - 1),
|
|
|
|
YUV_FIX2 = 6, // fixed-point precision for YUV->RGB
|
|
YUV_MASK2 = (256 << YUV_FIX2) - 1
|
|
};
|
|
|
|
//------------------------------------------------------------------------------
|
|
// slower on x86 by ~7-8%, but bit-exact with the SSE2/NEON version
|
|
|
|
static WEBP_INLINE int MultHi(int v, int coeff) { // _mm_mulhi_epu16 emulation
|
|
return (v * coeff) >> 8;
|
|
}
|
|
|
|
static WEBP_INLINE int VP8Clip8(int v) {
|
|
return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
|
|
}
|
|
|
|
static WEBP_INLINE int VP8YUVToR(int y, int v) {
|
|
return VP8Clip8(MultHi(y, 19077) + MultHi(v, 26149) - 14234);
|
|
}
|
|
|
|
static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
|
|
return VP8Clip8(MultHi(y, 19077) - MultHi(u, 6419) - MultHi(v, 13320) + 8708);
|
|
}
|
|
|
|
static WEBP_INLINE int VP8YUVToB(int y, int u) {
|
|
return VP8Clip8(MultHi(y, 19077) + MultHi(u, 33050) - 17685);
|
|
}
|
|
|
|
static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
|
|
uint8_t* const rgb) {
|
|
rgb[0] = VP8YUVToR(y, v);
|
|
rgb[1] = VP8YUVToG(y, u, v);
|
|
rgb[2] = VP8YUVToB(y, u);
|
|
}
|
|
|
|
static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
|
|
uint8_t* const bgr) {
|
|
bgr[0] = VP8YUVToB(y, u);
|
|
bgr[1] = VP8YUVToG(y, u, v);
|
|
bgr[2] = VP8YUVToR(y, v);
|
|
}
|
|
|
|
static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
|
|
uint8_t* const rgb) {
|
|
const int r = VP8YUVToR(y, v); // 5 usable bits
|
|
const int g = VP8YUVToG(y, u, v); // 6 usable bits
|
|
const int b = VP8YUVToB(y, u); // 5 usable bits
|
|
const int rg = (r & 0xf8) | (g >> 5);
|
|
const int gb = ((g << 3) & 0xe0) | (b >> 3);
|
|
#if (WEBP_SWAP_16BIT_CSP == 1)
|
|
rgb[0] = gb;
|
|
rgb[1] = rg;
|
|
#else
|
|
rgb[0] = rg;
|
|
rgb[1] = gb;
|
|
#endif
|
|
}
|
|
|
|
static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
|
|
uint8_t* const argb) {
|
|
const int r = VP8YUVToR(y, v); // 4 usable bits
|
|
const int g = VP8YUVToG(y, u, v); // 4 usable bits
|
|
const int b = VP8YUVToB(y, u); // 4 usable bits
|
|
const int rg = (r & 0xf0) | (g >> 4);
|
|
const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits
|
|
#if (WEBP_SWAP_16BIT_CSP == 1)
|
|
argb[0] = ba;
|
|
argb[1] = rg;
|
|
#else
|
|
argb[0] = rg;
|
|
argb[1] = ba;
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Alpha handling variants
|
|
|
|
static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
|
|
uint8_t* const argb) {
|
|
argb[0] = 0xff;
|
|
VP8YuvToRgb(y, u, v, argb + 1);
|
|
}
|
|
|
|
static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
|
|
uint8_t* const bgra) {
|
|
VP8YuvToBgr(y, u, v, bgra);
|
|
bgra[3] = 0xff;
|
|
}
|
|
|
|
static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
|
|
uint8_t* const rgba) {
|
|
VP8YuvToRgb(y, u, v, rgba);
|
|
rgba[3] = 0xff;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// SSE2 extra functions (mostly for upsampling_sse2.c)
|
|
|
|
#if defined(WEBP_USE_SSE2)
|
|
|
|
// Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst.
|
|
void VP8YuvToRgba32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst);
|
|
void VP8YuvToRgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst);
|
|
void VP8YuvToBgra32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst);
|
|
void VP8YuvToBgr32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst);
|
|
void VP8YuvToArgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst);
|
|
void VP8YuvToRgba444432_SSE2(const uint8_t* y, const uint8_t* u,
|
|
const uint8_t* v, uint8_t* dst);
|
|
void VP8YuvToRgb56532_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst);
|
|
|
|
#endif // WEBP_USE_SSE2
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// SSE41 extra functions (mostly for upsampling_sse41.c)
|
|
|
|
#if defined(WEBP_USE_SSE41)
|
|
|
|
// Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst.
|
|
void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst);
|
|
void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst);
|
|
|
|
#endif // WEBP_USE_SSE41
|
|
|
|
//------------------------------------------------------------------------------
|
|
// RGB -> YUV conversion
|
|
|
|
// Stub functions that can be called with various rounding values:
|
|
static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
|
|
uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
|
|
return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
|
|
}
|
|
|
|
static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
|
|
const int luma = 16839 * r + 33059 * g + 6420 * b;
|
|
return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip
|
|
}
|
|
|
|
static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
|
|
const int u = -9719 * r - 19081 * g + 28800 * b;
|
|
return VP8ClipUV(u, rounding);
|
|
}
|
|
|
|
static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
|
|
const int v = +28800 * r - 24116 * g - 4684 * b;
|
|
return VP8ClipUV(v, rounding);
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
} // extern "C"
|
|
#endif
|
|
|
|
#endif // WEBP_DSP_YUV_H_
|