mirror of
				https://github.com/42wim/matterbridge.git
				synced 2025-10-31 05:47:24 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			332 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) 2014 The mathutil Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package mathutil // import "modernc.org/mathutil"
 | |
| 
 | |
| import (
 | |
| 	"math"
 | |
| )
 | |
| 
 | |
| // IsPrimeUint16 returns true if n is prime. Typical run time is few ns.
 | |
| func IsPrimeUint16(n uint16) bool {
 | |
| 	return n > 0 && primes16[n-1] == 1
 | |
| }
 | |
| 
 | |
| // NextPrimeUint16 returns first prime > n and true if successful or an
 | |
| // undefined value and false if there is no next prime in the uint16 limits.
 | |
| // Typical run time is few ns.
 | |
| func NextPrimeUint16(n uint16) (p uint16, ok bool) {
 | |
| 	return n + uint16(primes16[n]), n < 65521
 | |
| }
 | |
| 
 | |
| // IsPrime returns true if n is prime. Typical run time is about 100 ns.
 | |
| func IsPrime(n uint32) bool {
 | |
| 	switch {
 | |
| 	case n&1 == 0:
 | |
| 		return n == 2
 | |
| 	case n%3 == 0:
 | |
| 		return n == 3
 | |
| 	case n%5 == 0:
 | |
| 		return n == 5
 | |
| 	case n%7 == 0:
 | |
| 		return n == 7
 | |
| 	case n%11 == 0:
 | |
| 		return n == 11
 | |
| 	case n%13 == 0:
 | |
| 		return n == 13
 | |
| 	case n%17 == 0:
 | |
| 		return n == 17
 | |
| 	case n%19 == 0:
 | |
| 		return n == 19
 | |
| 	case n%23 == 0:
 | |
| 		return n == 23
 | |
| 	case n%29 == 0:
 | |
| 		return n == 29
 | |
| 	case n%31 == 0:
 | |
| 		return n == 31
 | |
| 	case n%37 == 0:
 | |
| 		return n == 37
 | |
| 	case n%41 == 0:
 | |
| 		return n == 41
 | |
| 	case n%43 == 0:
 | |
| 		return n == 43
 | |
| 	case n%47 == 0:
 | |
| 		return n == 47
 | |
| 	case n%53 == 0:
 | |
| 		return n == 53 // Benchmarked optimum
 | |
| 	case n < 65536:
 | |
| 		// use table data
 | |
| 		return IsPrimeUint16(uint16(n))
 | |
| 	default:
 | |
| 		mod := ModPowUint32(2, (n+1)/2, n)
 | |
| 		if mod != 2 && mod != n-2 {
 | |
| 			return false
 | |
| 		}
 | |
| 		blk := &lohi[n>>24]
 | |
| 		lo, hi := blk.lo, blk.hi
 | |
| 		for lo <= hi {
 | |
| 			index := (lo + hi) >> 1
 | |
| 			liar := liars[index]
 | |
| 			switch {
 | |
| 			case n > liar:
 | |
| 				lo = index + 1
 | |
| 			case n < liar:
 | |
| 				hi = index - 1
 | |
| 			default:
 | |
| 				return false
 | |
| 			}
 | |
| 		}
 | |
| 		return true
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // IsPrimeUint64 returns true if n is prime. Typical run time is few tens of µs.
 | |
| //
 | |
| // SPRP bases: http://miller-rabin.appspot.com
 | |
| func IsPrimeUint64(n uint64) bool {
 | |
| 	switch {
 | |
| 	case n%2 == 0:
 | |
| 		return n == 2
 | |
| 	case n%3 == 0:
 | |
| 		return n == 3
 | |
| 	case n%5 == 0:
 | |
| 		return n == 5
 | |
| 	case n%7 == 0:
 | |
| 		return n == 7
 | |
| 	case n%11 == 0:
 | |
| 		return n == 11
 | |
| 	case n%13 == 0:
 | |
| 		return n == 13
 | |
| 	case n%17 == 0:
 | |
| 		return n == 17
 | |
| 	case n%19 == 0:
 | |
| 		return n == 19
 | |
| 	case n%23 == 0:
 | |
| 		return n == 23
 | |
| 	case n%29 == 0:
 | |
| 		return n == 29
 | |
| 	case n%31 == 0:
 | |
| 		return n == 31
 | |
| 	case n%37 == 0:
 | |
| 		return n == 37
 | |
| 	case n%41 == 0:
 | |
| 		return n == 41
 | |
| 	case n%43 == 0:
 | |
| 		return n == 43
 | |
| 	case n%47 == 0:
 | |
| 		return n == 47
 | |
| 	case n%53 == 0:
 | |
| 		return n == 53
 | |
| 	case n%59 == 0:
 | |
| 		return n == 59
 | |
| 	case n%61 == 0:
 | |
| 		return n == 61
 | |
| 	case n%67 == 0:
 | |
| 		return n == 67
 | |
| 	case n%71 == 0:
 | |
| 		return n == 71
 | |
| 	case n%73 == 0:
 | |
| 		return n == 73
 | |
| 	case n%79 == 0:
 | |
| 		return n == 79
 | |
| 	case n%83 == 0:
 | |
| 		return n == 83
 | |
| 	case n%89 == 0:
 | |
| 		return n == 89 // Benchmarked optimum
 | |
| 	case n <= math.MaxUint16:
 | |
| 		return IsPrimeUint16(uint16(n))
 | |
| 	case n <= math.MaxUint32:
 | |
| 		return ProbablyPrimeUint32(uint32(n), 11000544) &&
 | |
| 			ProbablyPrimeUint32(uint32(n), 31481107)
 | |
| 	case n < 105936894253:
 | |
| 		return ProbablyPrimeUint64_32(n, 2) &&
 | |
| 			ProbablyPrimeUint64_32(n, 1005905886) &&
 | |
| 			ProbablyPrimeUint64_32(n, 1340600841)
 | |
| 	case n < 31858317218647:
 | |
| 		return ProbablyPrimeUint64_32(n, 2) &&
 | |
| 			ProbablyPrimeUint64_32(n, 642735) &&
 | |
| 			ProbablyPrimeUint64_32(n, 553174392) &&
 | |
| 			ProbablyPrimeUint64_32(n, 3046413974)
 | |
| 	case n < 3071837692357849:
 | |
| 		return ProbablyPrimeUint64_32(n, 2) &&
 | |
| 			ProbablyPrimeUint64_32(n, 75088) &&
 | |
| 			ProbablyPrimeUint64_32(n, 642735) &&
 | |
| 			ProbablyPrimeUint64_32(n, 203659041) &&
 | |
| 			ProbablyPrimeUint64_32(n, 3613982119)
 | |
| 	default:
 | |
| 		return ProbablyPrimeUint64_32(n, 2) &&
 | |
| 			ProbablyPrimeUint64_32(n, 325) &&
 | |
| 			ProbablyPrimeUint64_32(n, 9375) &&
 | |
| 			ProbablyPrimeUint64_32(n, 28178) &&
 | |
| 			ProbablyPrimeUint64_32(n, 450775) &&
 | |
| 			ProbablyPrimeUint64_32(n, 9780504) &&
 | |
| 			ProbablyPrimeUint64_32(n, 1795265022)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // NextPrime returns first prime > n and true if successful or an undefined value and false if there
 | |
| // is no next prime in the uint32 limits. Typical run time is about 2 µs.
 | |
| func NextPrime(n uint32) (p uint32, ok bool) {
 | |
| 	switch {
 | |
| 	case n < 65521:
 | |
| 		p16, _ := NextPrimeUint16(uint16(n))
 | |
| 		return uint32(p16), true
 | |
| 	case n >= math.MaxUint32-4:
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	n++
 | |
| 	var d0, d uint32
 | |
| 	switch mod := n % 6; mod {
 | |
| 	case 0:
 | |
| 		d0, d = 1, 4
 | |
| 	case 1:
 | |
| 		d = 4
 | |
| 	case 2, 3, 4:
 | |
| 		d0, d = 5-mod, 2
 | |
| 	case 5:
 | |
| 		d = 2
 | |
| 	}
 | |
| 
 | |
| 	p = n + d0
 | |
| 	if p < n { // overflow
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	for {
 | |
| 		if IsPrime(p) {
 | |
| 			return p, true
 | |
| 		}
 | |
| 
 | |
| 		p0 := p
 | |
| 		p += d
 | |
| 		if p < p0 { // overflow
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		d ^= 6
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // NextPrimeUint64 returns first prime > n and true if successful or an undefined value and false if there
 | |
| // is no next prime in the uint64 limits. Typical run time is in hundreds of µs.
 | |
| func NextPrimeUint64(n uint64) (p uint64, ok bool) {
 | |
| 	switch {
 | |
| 	case n < 65521:
 | |
| 		p16, _ := NextPrimeUint16(uint16(n))
 | |
| 		return uint64(p16), true
 | |
| 	case n >= 18446744073709551557: // last uint64 prime
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	n++
 | |
| 	var d0, d uint64
 | |
| 	switch mod := n % 6; mod {
 | |
| 	case 0:
 | |
| 		d0, d = 1, 4
 | |
| 	case 1:
 | |
| 		d = 4
 | |
| 	case 2, 3, 4:
 | |
| 		d0, d = 5-mod, 2
 | |
| 	case 5:
 | |
| 		d = 2
 | |
| 	}
 | |
| 
 | |
| 	p = n + d0
 | |
| 	if p < n { // overflow
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	for {
 | |
| 		if ok = IsPrimeUint64(p); ok {
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		p0 := p
 | |
| 		p += d
 | |
| 		if p < p0 { // overflow
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		d ^= 6
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // FactorTerm is one term of an integer factorization.
 | |
| type FactorTerm struct {
 | |
| 	Prime uint32 // The divisor
 | |
| 	Power uint32 // Term == Prime^Power
 | |
| }
 | |
| 
 | |
| // FactorTerms represent a factorization of an integer
 | |
| type FactorTerms []FactorTerm
 | |
| 
 | |
| // FactorInt returns prime factorization of n > 1 or nil otherwise.
 | |
| // Resulting factors are ordered by Prime. Typical run time is few µs.
 | |
| func FactorInt(n uint32) (f FactorTerms) {
 | |
| 	switch {
 | |
| 	case n < 2:
 | |
| 		return
 | |
| 	case IsPrime(n):
 | |
| 		return []FactorTerm{{n, 1}}
 | |
| 	}
 | |
| 
 | |
| 	f, w := make([]FactorTerm, 9), 0
 | |
| 	for p := 2; p < len(primes16); p += int(primes16[p]) {
 | |
| 		if uint(p*p) > uint(n) {
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		power := uint32(0)
 | |
| 		for n%uint32(p) == 0 {
 | |
| 			n /= uint32(p)
 | |
| 			power++
 | |
| 		}
 | |
| 		if power != 0 {
 | |
| 			f[w] = FactorTerm{uint32(p), power}
 | |
| 			w++
 | |
| 		}
 | |
| 		if n == 1 {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	if n != 1 {
 | |
| 		f[w] = FactorTerm{n, 1}
 | |
| 		w++
 | |
| 	}
 | |
| 	return f[:w]
 | |
| }
 | |
| 
 | |
| // PrimorialProductsUint32 returns a slice of numbers in [lo, hi] which are a
 | |
| // product of max 'max' primorials. The slice is not sorted.
 | |
| //
 | |
| // See also: http://en.wikipedia.org/wiki/Primorial
 | |
| func PrimorialProductsUint32(lo, hi, max uint32) (r []uint32) {
 | |
| 	lo64, hi64 := int64(lo), int64(hi)
 | |
| 	if max > 31 { // N/A
 | |
| 		max = 31
 | |
| 	}
 | |
| 
 | |
| 	var f func(int64, int64, uint32)
 | |
| 	f = func(n, p int64, emax uint32) {
 | |
| 		e := uint32(1)
 | |
| 		for n <= hi64 && e <= emax {
 | |
| 			n *= p
 | |
| 			if n >= lo64 && n <= hi64 {
 | |
| 				r = append(r, uint32(n))
 | |
| 			}
 | |
| 			if n < hi64 {
 | |
| 				p, _ := NextPrime(uint32(p))
 | |
| 				f(n, int64(p), e)
 | |
| 			}
 | |
| 			e++
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	f(1, 2, max)
 | |
| 	return
 | |
| }
 | 
