mirror of
https://github.com/42wim/matterbridge.git
synced 2024-12-22 11:12:44 +01:00
53cafa9f3d
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo` The default binaries are still "pure" go and uses the old way of converting. * Move lottie_convert.py conversion code to its own file * Add optional libtgsconverter * Update vendor * Apply suggestions from code review * Update bridge/helper/libtgsconverter.go Co-authored-by: Wim <wim@42.be>
160 lines
5.2 KiB
C
160 lines
5.2 KiB
C
// Copyright 2017 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// distortion calculation
|
|
//
|
|
// Author: Skal (pascal.massimino@gmail.com)
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h> // for abs()
|
|
|
|
#include "dsp_dsp.h"
|
|
|
|
#if !defined(WEBP_REDUCE_SIZE)
|
|
|
|
//------------------------------------------------------------------------------
|
|
// SSIM / PSNR
|
|
|
|
// hat-shaped filter. Sum of coefficients is equal to 16.
|
|
static const uint32_t kWeight[2 * VP8_SSIM_KERNEL + 1] = {
|
|
1, 2, 3, 4, 3, 2, 1
|
|
};
|
|
static const uint32_t kWeightSum = 16 * 16; // sum{kWeight}^2
|
|
|
|
static WEBP_INLINE double SSIMCalculation(
|
|
const VP8DistoStats* const stats, uint32_t N /*num samples*/) {
|
|
const uint32_t w2 = N * N;
|
|
const uint32_t C1 = 20 * w2;
|
|
const uint32_t C2 = 60 * w2;
|
|
const uint32_t C3 = 8 * 8 * w2; // 'dark' limit ~= 6
|
|
const uint64_t xmxm = (uint64_t)stats->xm * stats->xm;
|
|
const uint64_t ymym = (uint64_t)stats->ym * stats->ym;
|
|
if (xmxm + ymym >= C3) {
|
|
const int64_t xmym = (int64_t)stats->xm * stats->ym;
|
|
const int64_t sxy = (int64_t)stats->xym * N - xmym; // can be negative
|
|
const uint64_t sxx = (uint64_t)stats->xxm * N - xmxm;
|
|
const uint64_t syy = (uint64_t)stats->yym * N - ymym;
|
|
// we descale by 8 to prevent overflow during the fnum/fden multiply.
|
|
const uint64_t num_S = (2 * (uint64_t)(sxy < 0 ? 0 : sxy) + C2) >> 8;
|
|
const uint64_t den_S = (sxx + syy + C2) >> 8;
|
|
const uint64_t fnum = (2 * xmym + C1) * num_S;
|
|
const uint64_t fden = (xmxm + ymym + C1) * den_S;
|
|
const double r = (double)fnum / fden;
|
|
assert(r >= 0. && r <= 1.0);
|
|
return r;
|
|
}
|
|
return 1.; // area is too dark to contribute meaningfully
|
|
}
|
|
|
|
double VP8SSIMFromStats(const VP8DistoStats* const stats) {
|
|
return SSIMCalculation(stats, kWeightSum);
|
|
}
|
|
|
|
double VP8SSIMFromStatsClipped(const VP8DistoStats* const stats) {
|
|
return SSIMCalculation(stats, stats->w);
|
|
}
|
|
|
|
static double SSIMGetClipped_C(const uint8_t* src1, int stride1,
|
|
const uint8_t* src2, int stride2,
|
|
int xo, int yo, int W, int H) {
|
|
VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 };
|
|
const int ymin = (yo - VP8_SSIM_KERNEL < 0) ? 0 : yo - VP8_SSIM_KERNEL;
|
|
const int ymax = (yo + VP8_SSIM_KERNEL > H - 1) ? H - 1
|
|
: yo + VP8_SSIM_KERNEL;
|
|
const int xmin = (xo - VP8_SSIM_KERNEL < 0) ? 0 : xo - VP8_SSIM_KERNEL;
|
|
const int xmax = (xo + VP8_SSIM_KERNEL > W - 1) ? W - 1
|
|
: xo + VP8_SSIM_KERNEL;
|
|
int x, y;
|
|
src1 += ymin * stride1;
|
|
src2 += ymin * stride2;
|
|
for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) {
|
|
for (x = xmin; x <= xmax; ++x) {
|
|
const uint32_t w = kWeight[VP8_SSIM_KERNEL + x - xo]
|
|
* kWeight[VP8_SSIM_KERNEL + y - yo];
|
|
const uint32_t s1 = src1[x];
|
|
const uint32_t s2 = src2[x];
|
|
stats.w += w;
|
|
stats.xm += w * s1;
|
|
stats.ym += w * s2;
|
|
stats.xxm += w * s1 * s1;
|
|
stats.xym += w * s1 * s2;
|
|
stats.yym += w * s2 * s2;
|
|
}
|
|
}
|
|
return VP8SSIMFromStatsClipped(&stats);
|
|
}
|
|
|
|
static double SSIMGet_C(const uint8_t* src1, int stride1,
|
|
const uint8_t* src2, int stride2) {
|
|
VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 };
|
|
int x, y;
|
|
for (y = 0; y <= 2 * VP8_SSIM_KERNEL; ++y, src1 += stride1, src2 += stride2) {
|
|
for (x = 0; x <= 2 * VP8_SSIM_KERNEL; ++x) {
|
|
const uint32_t w = kWeight[x] * kWeight[y];
|
|
const uint32_t s1 = src1[x];
|
|
const uint32_t s2 = src2[x];
|
|
stats.xm += w * s1;
|
|
stats.ym += w * s2;
|
|
stats.xxm += w * s1 * s1;
|
|
stats.xym += w * s1 * s2;
|
|
stats.yym += w * s2 * s2;
|
|
}
|
|
}
|
|
return VP8SSIMFromStats(&stats);
|
|
}
|
|
|
|
#endif // !defined(WEBP_REDUCE_SIZE)
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
#if !defined(WEBP_DISABLE_STATS)
|
|
static uint32_t AccumulateSSE_C(const uint8_t* src1,
|
|
const uint8_t* src2, int len) {
|
|
int i;
|
|
uint32_t sse2 = 0;
|
|
assert(len <= 65535); // to ensure that accumulation fits within uint32_t
|
|
for (i = 0; i < len; ++i) {
|
|
const int32_t diff = src1[i] - src2[i];
|
|
sse2 += diff * diff;
|
|
}
|
|
return sse2;
|
|
}
|
|
#endif
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
#if !defined(WEBP_REDUCE_SIZE)
|
|
VP8SSIMGetFunc VP8SSIMGet;
|
|
VP8SSIMGetClippedFunc VP8SSIMGetClipped;
|
|
#endif
|
|
#if !defined(WEBP_DISABLE_STATS)
|
|
VP8AccumulateSSEFunc VP8AccumulateSSE;
|
|
#endif
|
|
|
|
extern void VP8SSIMDspInitSSE2(void);
|
|
|
|
WEBP_DSP_INIT_FUNC(VP8SSIMDspInit) {
|
|
#if !defined(WEBP_REDUCE_SIZE)
|
|
VP8SSIMGetClipped = SSIMGetClipped_C;
|
|
VP8SSIMGet = SSIMGet_C;
|
|
#endif
|
|
|
|
#if !defined(WEBP_DISABLE_STATS)
|
|
VP8AccumulateSSE = AccumulateSSE_C;
|
|
#endif
|
|
|
|
if (VP8GetCPUInfo != NULL) {
|
|
#if defined(WEBP_USE_SSE2)
|
|
if (VP8GetCPUInfo(kSSE2)) {
|
|
VP8SSIMDspInitSSE2();
|
|
}
|
|
#endif
|
|
}
|
|
}
|