3
0
mirror of https://github.com/ergochat/ergo.git synced 2025-01-25 19:54:25 +01:00
ergo/vendor/github.com/tidwall/btree/generic.go
2023-01-15 08:26:32 -05:00

1304 lines
28 KiB
Go

// Copyright 2020 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package btree
import (
"sync"
"sync/atomic"
)
const (
degree = 128
maxItems = degree*2 - 1 // max items per node. max children is +1
minItems = maxItems / 2
)
type BTreeG[T any] struct {
mu *sync.RWMutex
cow uint64
root *node[T]
count int
locks bool
less func(a, b T) bool
empty T
}
type node[T any] struct {
cow uint64
count int
items []T
children *[]*node[T]
}
var gcow uint64
// PathHint is a utility type used with the *Hint() functions. Hints provide
// faster operations for clustered keys.
type PathHint struct {
used [8]bool
path [8]uint8
}
// Options for passing to New when creating a new BTree.
type Options struct {
NoLocks bool
}
// New returns a new BTree
func NewBTreeG[T any](less func(a, b T) bool) *BTreeG[T] {
return NewBTreeGOptions(less, Options{})
}
func NewBTreeGOptions[T any](less func(a, b T) bool, opts Options) *BTreeG[T] {
tr := new(BTreeG[T])
tr.cow = atomic.AddUint64(&gcow, 1)
tr.mu = new(sync.RWMutex)
tr.less = less
tr.locks = !opts.NoLocks
return tr
}
// Less is a convenience function that performs a comparison of two items
// using the same "less" function provided to New.
func (tr *BTreeG[T]) Less(a, b T) bool {
return tr.less(a, b)
}
func (tr *BTreeG[T]) newNode(leaf bool) *node[T] {
n := &node[T]{cow: tr.cow}
if !leaf {
n.children = new([]*node[T])
}
return n
}
// leaf returns true if the node is a leaf.
func (n *node[T]) leaf() bool {
return n.children == nil
}
func (tr *BTreeG[T]) bsearch(n *node[T], key T) (index int, found bool) {
low, high := 0, len(n.items)
for low < high {
h := int(uint(low+high) >> 1)
if !tr.less(key, n.items[h]) {
low = h + 1
} else {
high = h
}
}
if low > 0 && !tr.less(n.items[low-1], key) {
return low - 1, true
}
return low, false
}
func (tr *BTreeG[T]) find(n *node[T], key T, hint *PathHint, depth int,
) (index int, found bool) {
if hint == nil {
return tr.bsearch(n, key)
}
return tr.hintsearch(n, key, hint, depth)
}
func (tr *BTreeG[T]) hintsearch(n *node[T], key T, hint *PathHint, depth int,
) (index int, found bool) {
// Best case finds the exact match, updates the hint and returns.
// Worst case, updates the low and high bounds to binary search between.
low := 0
high := len(n.items) - 1
if depth < 8 && hint.used[depth] {
index = int(hint.path[depth])
if index >= len(n.items) {
// tail item
if tr.Less(n.items[len(n.items)-1], key) {
index = len(n.items)
goto path_match
}
index = len(n.items) - 1
}
if tr.Less(key, n.items[index]) {
if index == 0 || tr.Less(n.items[index-1], key) {
goto path_match
}
high = index - 1
} else if tr.Less(n.items[index], key) {
low = index + 1
} else {
found = true
goto path_match
}
}
// Do a binary search between low and high
// keep on going until low > high, where the guarantee on low is that
// key >= items[low - 1]
for low <= high {
mid := low + ((high+1)-low)/2
// if key >= n.items[mid], low = mid + 1
// which implies that key >= everything below low
if !tr.Less(key, n.items[mid]) {
low = mid + 1
} else {
high = mid - 1
}
}
// if low > 0, n.items[low - 1] >= key,
// we have from before that key >= n.items[low - 1]
// therefore key = n.items[low - 1],
// and we have found the entry for key.
// Otherwise we must keep searching for the key in index `low`.
if low > 0 && !tr.Less(n.items[low-1], key) {
index = low - 1
found = true
} else {
index = low
found = false
}
path_match:
if depth < 8 {
hint.used[depth] = true
var pathIndex uint8
if n.leaf() && found {
pathIndex = uint8(index + 1)
} else {
pathIndex = uint8(index)
}
if pathIndex != hint.path[depth] {
hint.path[depth] = pathIndex
for i := depth + 1; i < 8; i++ {
hint.used[i] = false
}
}
}
return index, found
}
// SetHint sets or replace a value for a key using a path hint
func (tr *BTreeG[T]) SetHint(item T, hint *PathHint) (prev T, replaced bool) {
if tr.locks {
tr.mu.Lock()
prev, replaced = tr.setHint(item, hint)
tr.mu.Unlock()
} else {
prev, replaced = tr.setHint(item, hint)
}
return prev, replaced
}
func (tr *BTreeG[T]) setHint(item T, hint *PathHint) (prev T, replaced bool) {
if tr.root == nil {
tr.root = tr.newNode(true)
tr.root.items = append([]T{}, item)
tr.root.count = 1
tr.count = 1
return tr.empty, false
}
prev, replaced, split := tr.nodeSet(&tr.root, item, hint, 0)
if split {
left := tr.cowLoad(&tr.root)
right, median := tr.nodeSplit(left)
tr.root = tr.newNode(false)
*tr.root.children = make([]*node[T], 0, maxItems+1)
*tr.root.children = append([]*node[T]{}, left, right)
tr.root.items = append([]T{}, median)
tr.root.updateCount()
return tr.setHint(item, hint)
}
if replaced {
return prev, true
}
tr.count++
return tr.empty, false
}
// Set or replace a value for a key
func (tr *BTreeG[T]) Set(item T) (T, bool) {
return tr.SetHint(item, nil)
}
func (tr *BTreeG[T]) nodeSplit(n *node[T]) (right *node[T], median T) {
i := maxItems / 2
median = n.items[i]
const sliceItems = true
// right node
right = tr.newNode(n.leaf())
if sliceItems {
right.items = n.items[i+1:]
if !n.leaf() {
*right.children = (*n.children)[i+1:]
}
} else {
right.items = make([]T, len(n.items[i+1:]), maxItems/2)
copy(right.items, n.items[i+1:])
if !n.leaf() {
*right.children =
make([]*node[T], len((*n.children)[i+1:]), maxItems+1)
copy(*right.children, (*n.children)[i+1:])
}
}
right.updateCount()
// left node
if sliceItems {
n.items[i] = tr.empty
n.items = n.items[:i:i]
if !n.leaf() {
*n.children = (*n.children)[: i+1 : i+1]
}
} else {
for j := i; j < len(n.items); j++ {
n.items[j] = tr.empty
}
if !n.leaf() {
for j := i + 1; j < len((*n.children)); j++ {
(*n.children)[j] = nil
}
}
n.items = n.items[:i]
if !n.leaf() {
*n.children = (*n.children)[:i+1]
}
}
n.updateCount()
return right, median
}
func (n *node[T]) updateCount() {
n.count = len(n.items)
if !n.leaf() {
for i := 0; i < len(*n.children); i++ {
n.count += (*n.children)[i].count
}
}
}
// This operation should not be inlined because it's expensive and rarely
// called outside of heavy copy-on-write situations. Marking it "noinline"
// allows for the parent cowLoad to be inlined.
// go:noinline
func (tr *BTreeG[T]) copy(n *node[T]) *node[T] {
n2 := new(node[T])
n2.cow = tr.cow
n2.count = n.count
n2.items = make([]T, len(n.items), cap(n.items))
copy(n2.items, n.items)
if !n.leaf() {
n2.children = new([]*node[T])
*n2.children = make([]*node[T], len(*n.children), maxItems+1)
copy(*n2.children, *n.children)
}
return n2
}
// cowLoad loads the provided node and, if needed, performs a copy-on-write.
func (tr *BTreeG[T]) cowLoad(cn **node[T]) *node[T] {
if (*cn).cow != tr.cow {
*cn = tr.copy(*cn)
}
return *cn
}
func (tr *BTreeG[T]) nodeSet(cn **node[T], item T,
hint *PathHint, depth int,
) (prev T, replaced bool, split bool) {
if (*cn).cow != tr.cow {
*cn = tr.copy(*cn)
}
n := *cn
var i int
var found bool
if hint == nil {
i, found = tr.bsearch(n, item)
} else {
i, found = tr.hintsearch(n, item, hint, depth)
}
if found {
prev = n.items[i]
n.items[i] = item
return prev, true, false
}
if n.leaf() {
if len(n.items) == maxItems {
return tr.empty, false, true
}
n.items = append(n.items, tr.empty)
copy(n.items[i+1:], n.items[i:])
n.items[i] = item
n.count++
return tr.empty, false, false
}
prev, replaced, split = tr.nodeSet(&(*n.children)[i], item, hint, depth+1)
if split {
if len(n.items) == maxItems {
return tr.empty, false, true
}
right, median := tr.nodeSplit((*n.children)[i])
*n.children = append(*n.children, nil)
copy((*n.children)[i+1:], (*n.children)[i:])
(*n.children)[i+1] = right
n.items = append(n.items, tr.empty)
copy(n.items[i+1:], n.items[i:])
n.items[i] = median
return tr.nodeSet(&n, item, hint, depth)
}
if !replaced {
n.count++
}
return prev, replaced, false
}
func (tr *BTreeG[T]) Scan(iter func(item T) bool) {
if tr.rlock() {
defer tr.runlock()
}
if tr.root == nil {
return
}
tr.root.scan(iter)
}
func (n *node[T]) scan(iter func(item T) bool) bool {
if n.leaf() {
for i := 0; i < len(n.items); i++ {
if !iter(n.items[i]) {
return false
}
}
return true
}
for i := 0; i < len(n.items); i++ {
if !(*n.children)[i].scan(iter) {
return false
}
if !iter(n.items[i]) {
return false
}
}
return (*n.children)[len(*n.children)-1].scan(iter)
}
// Get a value for key
func (tr *BTreeG[T]) Get(key T) (T, bool) {
if tr.locks {
return tr.GetHint(key, nil)
}
if tr.root == nil {
return tr.empty, false
}
n := tr.root
for {
i, found := tr.bsearch(n, key)
if found {
return n.items[i], true
}
if n.children == nil {
return tr.empty, false
}
n = (*n.children)[i]
}
}
// GetHint gets a value for key using a path hint
func (tr *BTreeG[T]) GetHint(key T, hint *PathHint) (value T, ok bool) {
if tr.rlock() {
defer tr.runlock()
}
return tr.getHint(key, hint)
}
// GetHint gets a value for key using a path hint
func (tr *BTreeG[T]) getHint(key T, hint *PathHint) (T, bool) {
if tr.root == nil {
return tr.empty, false
}
n := tr.root
depth := 0
for {
i, found := tr.find(n, key, hint, depth)
if found {
return n.items[i], true
}
if n.children == nil {
return tr.empty, false
}
n = (*n.children)[i]
depth++
}
}
// Len returns the number of items in the tree
func (tr *BTreeG[T]) Len() int {
return tr.count
}
// Delete a value for a key and returns the deleted value.
// Returns false if there was no value by that key found.
func (tr *BTreeG[T]) Delete(key T) (T, bool) {
return tr.DeleteHint(key, nil)
}
// DeleteHint deletes a value for a key using a path hint and returns the
// deleted value.
// Returns false if there was no value by that key found.
func (tr *BTreeG[T]) DeleteHint(key T, hint *PathHint) (T, bool) {
if tr.lock() {
defer tr.unlock()
}
return tr.deleteHint(key, hint)
}
func (tr *BTreeG[T]) deleteHint(key T, hint *PathHint) (T, bool) {
if tr.root == nil {
return tr.empty, false
}
prev, deleted := tr.delete(&tr.root, false, key, hint, 0)
if !deleted {
return tr.empty, false
}
if len(tr.root.items) == 0 && !tr.root.leaf() {
tr.root = (*tr.root.children)[0]
}
tr.count--
if tr.count == 0 {
tr.root = nil
}
return prev, true
}
func (tr *BTreeG[T]) delete(cn **node[T], max bool, key T,
hint *PathHint, depth int,
) (T, bool) {
n := tr.cowLoad(cn)
var i int
var found bool
if max {
i, found = len(n.items)-1, true
} else {
i, found = tr.find(n, key, hint, depth)
}
if n.leaf() {
if found {
// found the items at the leaf, remove it and return.
prev := n.items[i]
copy(n.items[i:], n.items[i+1:])
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
n.count--
return prev, true
}
return tr.empty, false
}
var prev T
var deleted bool
if found {
if max {
i++
prev, deleted = tr.delete(&(*n.children)[i], true, tr.empty, nil, 0)
} else {
prev = n.items[i]
maxItem, _ := tr.delete(&(*n.children)[i], true, tr.empty, nil, 0)
deleted = true
n.items[i] = maxItem
}
} else {
prev, deleted = tr.delete(&(*n.children)[i], max, key, hint, depth+1)
}
if !deleted {
return tr.empty, false
}
n.count--
if len((*n.children)[i].items) < minItems {
tr.nodeRebalance(n, i)
}
return prev, true
}
// nodeRebalance rebalances the child nodes following a delete operation.
// Provide the index of the child node with the number of items that fell
// below minItems.
func (tr *BTreeG[T]) nodeRebalance(n *node[T], i int) {
if i == len(n.items) {
i--
}
// ensure copy-on-write
left := tr.cowLoad(&(*n.children)[i])
right := tr.cowLoad(&(*n.children)[i+1])
if len(left.items)+len(right.items) < maxItems {
// Merges the left and right children nodes together as a single node
// that includes (left,item,right), and places the contents into the
// existing left node. Delete the right node altogether and move the
// following items and child nodes to the left by one slot.
// merge (left,item,right)
left.items = append(left.items, n.items[i])
left.items = append(left.items, right.items...)
if !left.leaf() {
*left.children = append(*left.children, *right.children...)
}
left.count += right.count + 1
// move the items over one slot
copy(n.items[i:], n.items[i+1:])
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
// move the children over one slot
copy((*n.children)[i+1:], (*n.children)[i+2:])
(*n.children)[len(*n.children)-1] = nil
(*n.children) = (*n.children)[:len(*n.children)-1]
} else if len(left.items) > len(right.items) {
// move left -> right over one slot
// Move the item of the parent node at index into the right-node first
// slot, and move the left-node last item into the previously moved
// parent item slot.
right.items = append(right.items, tr.empty)
copy(right.items[1:], right.items)
right.items[0] = n.items[i]
right.count++
n.items[i] = left.items[len(left.items)-1]
left.items[len(left.items)-1] = tr.empty
left.items = left.items[:len(left.items)-1]
left.count--
if !left.leaf() {
// move the left-node last child into the right-node first slot
*right.children = append(*right.children, nil)
copy((*right.children)[1:], *right.children)
(*right.children)[0] = (*left.children)[len(*left.children)-1]
(*left.children)[len(*left.children)-1] = nil
(*left.children) = (*left.children)[:len(*left.children)-1]
left.count -= (*right.children)[0].count
right.count += (*right.children)[0].count
}
} else {
// move left <- right over one slot
// Same as above but the other direction
left.items = append(left.items, n.items[i])
left.count++
n.items[i] = right.items[0]
copy(right.items, right.items[1:])
right.items[len(right.items)-1] = tr.empty
right.items = right.items[:len(right.items)-1]
right.count--
if !left.leaf() {
*left.children = append(*left.children, (*right.children)[0])
copy(*right.children, (*right.children)[1:])
(*right.children)[len(*right.children)-1] = nil
*right.children = (*right.children)[:len(*right.children)-1]
left.count += (*left.children)[len(*left.children)-1].count
right.count -= (*left.children)[len(*left.children)-1].count
}
}
}
// Ascend the tree within the range [pivot, last]
// Pass nil for pivot to scan all item in ascending order
// Return false to stop iterating
func (tr *BTreeG[T]) Ascend(pivot T, iter func(item T) bool) {
if tr.rlock() {
defer tr.runlock()
}
if tr.root == nil {
return
}
tr.ascend(tr.root, pivot, nil, 0, iter)
}
// The return value of this function determines whether we should keep iterating
// upon this functions return.
func (tr *BTreeG[T]) ascend(n *node[T], pivot T,
hint *PathHint, depth int, iter func(item T) bool,
) bool {
i, found := tr.find(n, pivot, hint, depth)
if !found {
if !n.leaf() {
if !tr.ascend((*n.children)[i], pivot, hint, depth+1, iter) {
return false
}
}
}
// We are either in the case that
// - node is found, we should iterate through it starting at `i`,
// the index it was located at.
// - node is not found, and TODO: fill in.
for ; i < len(n.items); i++ {
if !iter(n.items[i]) {
return false
}
if !n.leaf() {
if !(*n.children)[i+1].scan(iter) {
return false
}
}
}
return true
}
func (tr *BTreeG[T]) Reverse(iter func(item T) bool) {
if tr.rlock() {
defer tr.runlock()
}
if tr.root == nil {
return
}
tr.root.reverse(iter)
}
func (n *node[T]) reverse(iter func(item T) bool) bool {
if n.leaf() {
for i := len(n.items) - 1; i >= 0; i-- {
if !iter(n.items[i]) {
return false
}
}
return true
}
if !(*n.children)[len(*n.children)-1].reverse(iter) {
return false
}
for i := len(n.items) - 1; i >= 0; i-- {
if !iter(n.items[i]) {
return false
}
if !(*n.children)[i].reverse(iter) {
return false
}
}
return true
}
// Descend the tree within the range [pivot, first]
// Pass nil for pivot to scan all item in descending order
// Return false to stop iterating
func (tr *BTreeG[T]) Descend(pivot T, iter func(item T) bool) {
if tr.rlock() {
defer tr.runlock()
}
if tr.root == nil {
return
}
tr.descend(tr.root, pivot, nil, 0, iter)
}
func (tr *BTreeG[T]) descend(n *node[T], pivot T,
hint *PathHint, depth int, iter func(item T) bool,
) bool {
i, found := tr.find(n, pivot, hint, depth)
if !found {
if !n.leaf() {
if !tr.descend((*n.children)[i], pivot, hint, depth+1, iter) {
return false
}
}
i--
}
for ; i >= 0; i-- {
if !iter(n.items[i]) {
return false
}
if !n.leaf() {
if !(*n.children)[i].reverse(iter) {
return false
}
}
}
return true
}
// Load is for bulk loading pre-sorted items
func (tr *BTreeG[T]) Load(item T) (T, bool) {
if tr.lock() {
defer tr.unlock()
}
if tr.root == nil {
return tr.setHint(item, nil)
}
n := tr.cowLoad(&tr.root)
for {
n.count++ // optimistically update counts
if n.leaf() {
if len(n.items) < maxItems {
if tr.Less(n.items[len(n.items)-1], item) {
n.items = append(n.items, item)
tr.count++
return tr.empty, false
}
}
break
}
n = tr.cowLoad(&(*n.children)[len(*n.children)-1])
}
// revert the counts
n = tr.root
for {
n.count--
if n.leaf() {
break
}
n = (*n.children)[len(*n.children)-1]
}
return tr.setHint(item, nil)
}
// Min returns the minimum item in tree.
// Returns nil if the treex has no items.
func (tr *BTreeG[T]) Min() (T, bool) {
if tr.rlock() {
defer tr.runlock()
}
if tr.root == nil {
return tr.empty, false
}
n := tr.root
for {
if n.leaf() {
return n.items[0], true
}
n = (*n.children)[0]
}
}
// Max returns the maximum item in tree.
// Returns nil if the tree has no items.
func (tr *BTreeG[T]) Max() (T, bool) {
if tr.rlock() {
defer tr.runlock()
}
if tr.root == nil {
return tr.empty, false
}
n := tr.root
for {
if n.leaf() {
return n.items[len(n.items)-1], true
}
n = (*n.children)[len(*n.children)-1]
}
}
// PopMin removes the minimum item in tree and returns it.
// Returns nil if the tree has no items.
func (tr *BTreeG[T]) PopMin() (T, bool) {
if tr.lock() {
defer tr.unlock()
}
if tr.root == nil {
return tr.empty, false
}
n := tr.cowLoad(&tr.root)
var item T
for {
n.count-- // optimistically update counts
if n.leaf() {
item = n.items[0]
if len(n.items) == minItems {
break
}
copy(n.items[:], n.items[1:])
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
tr.count--
if tr.count == 0 {
tr.root = nil
}
return item, true
}
n = tr.cowLoad(&(*n.children)[0])
}
// revert the counts
n = tr.root
for {
n.count++
if n.leaf() {
break
}
n = (*n.children)[0]
}
return tr.deleteHint(item, nil)
}
// PopMax removes the maximum item in tree and returns it.
// Returns nil if the tree has no items.
func (tr *BTreeG[T]) PopMax() (T, bool) {
if tr.lock() {
defer tr.unlock()
}
if tr.root == nil {
return tr.empty, false
}
n := tr.cowLoad(&tr.root)
var item T
for {
n.count-- // optimistically update counts
if n.leaf() {
item = n.items[len(n.items)-1]
if len(n.items) == minItems {
break
}
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
tr.count--
if tr.count == 0 {
tr.root = nil
}
return item, true
}
n = tr.cowLoad(&(*n.children)[len(*n.children)-1])
}
// revert the counts
n = tr.root
for {
n.count++
if n.leaf() {
break
}
n = (*n.children)[len(*n.children)-1]
}
return tr.deleteHint(item, nil)
}
// GetAt returns the value at index.
// Return nil if the tree is empty or the index is out of bounds.
func (tr *BTreeG[T]) GetAt(index int) (T, bool) {
if tr.rlock() {
defer tr.runlock()
}
if tr.root == nil || index < 0 || index >= tr.count {
return tr.empty, false
}
n := tr.root
for {
if n.leaf() {
return n.items[index], true
}
i := 0
for ; i < len(n.items); i++ {
if index < (*n.children)[i].count {
break
} else if index == (*n.children)[i].count {
return n.items[i], true
}
index -= (*n.children)[i].count + 1
}
n = (*n.children)[i]
}
}
// DeleteAt deletes the item at index.
// Return nil if the tree is empty or the index is out of bounds.
func (tr *BTreeG[T]) DeleteAt(index int) (T, bool) {
if tr.lock() {
defer tr.unlock()
}
if tr.root == nil || index < 0 || index >= tr.count {
return tr.empty, false
}
var pathbuf [8]uint8 // track the path
path := pathbuf[:0]
var item T
n := tr.cowLoad(&tr.root)
outer:
for {
n.count-- // optimistically update counts
if n.leaf() {
// the index is the item position
item = n.items[index]
if len(n.items) == minItems {
path = append(path, uint8(index))
break outer
}
copy(n.items[index:], n.items[index+1:])
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
tr.count--
if tr.count == 0 {
tr.root = nil
}
return item, true
}
i := 0
for ; i < len(n.items); i++ {
if index < (*n.children)[i].count {
break
} else if index == (*n.children)[i].count {
item = n.items[i]
path = append(path, uint8(i))
break outer
}
index -= (*n.children)[i].count + 1
}
path = append(path, uint8(i))
n = tr.cowLoad(&(*n.children)[i])
}
// revert the counts
var hint PathHint
n = tr.root
for i := 0; i < len(path); i++ {
if i < len(hint.path) {
hint.path[i] = uint8(path[i])
hint.used[i] = true
}
n.count++
if !n.leaf() {
n = (*n.children)[uint8(path[i])]
}
}
return tr.deleteHint(item, &hint)
}
// Height returns the height of the tree.
// Returns zero if tree has no items.
func (tr *BTreeG[T]) Height() int {
if tr.rlock() {
defer tr.runlock()
}
var height int
if tr.root != nil {
n := tr.root
for {
height++
if n.leaf() {
break
}
n = (*n.children)[0]
}
}
return height
}
// Walk iterates over all items in tree, in order.
// The items param will contain one or more items.
func (tr *BTreeG[T]) Walk(iter func(item []T) bool) {
if tr.rlock() {
defer tr.runlock()
}
if tr.root != nil {
tr.root.walk(iter)
}
}
func (n *node[T]) walk(iter func(item []T) bool) bool {
if n.leaf() {
if !iter(n.items) {
return false
}
} else {
for i := 0; i < len(n.items); i++ {
(*n.children)[i].walk(iter)
if !iter(n.items[i : i+1]) {
return false
}
}
(*n.children)[len(n.items)].walk(iter)
}
return true
}
// Copy the tree. This is a copy-on-write operation and is very fast because
// it only performs a shadowed copy.
func (tr *BTreeG[T]) Copy() *BTreeG[T] {
if tr.lock() {
defer tr.unlock()
}
tr.cow = atomic.AddUint64(&gcow, 1)
tr2 := new(BTreeG[T])
*tr2 = *tr
tr2.mu = new(sync.RWMutex)
tr2.cow = atomic.AddUint64(&gcow, 1)
return tr2
}
func (tr *BTreeG[T]) lock() bool {
if tr.locks {
tr.mu.Lock()
}
return tr.locks
}
func (tr *BTreeG[T]) unlock() {
tr.mu.Unlock()
}
func (tr *BTreeG[T]) rlock() bool {
if tr.locks {
tr.mu.RLock()
}
return tr.locks
}
func (tr *BTreeG[T]) runlock() {
tr.mu.RUnlock()
}
// Iter represents an iterator
type GenericIter[T any] struct {
tr *BTreeG[T]
locked bool
seeked bool
atstart bool
atend bool
stack []genericIterStackItem[T]
item T
}
type genericIterStackItem[T any] struct {
n *node[T]
i int
}
// Iter returns a read-only iterator.
// The Release method must be called finished with iterator.
func (tr *BTreeG[T]) Iter() GenericIter[T] {
var iter GenericIter[T]
iter.tr = tr
iter.locked = tr.rlock()
return iter
}
// Seek to item greater-or-equal-to key.
// Returns false if there was no item found.
func (iter *GenericIter[T]) Seek(key T) bool {
if iter.tr == nil {
return false
}
iter.seeked = true
iter.stack = iter.stack[:0]
if iter.tr.root == nil {
return false
}
n := iter.tr.root
for {
i, found := iter.tr.find(n, key, nil, 0)
iter.stack = append(iter.stack, genericIterStackItem[T]{n, i})
if found {
iter.item = n.items[i]
return true
}
if n.leaf() {
iter.stack[len(iter.stack)-1].i--
return iter.Next()
}
n = (*n.children)[i]
}
}
// First moves iterator to first item in tree.
// Returns false if the tree is empty.
func (iter *GenericIter[T]) First() bool {
if iter.tr == nil {
return false
}
iter.atend = false
iter.atstart = false
iter.seeked = true
iter.stack = iter.stack[:0]
if iter.tr.root == nil {
return false
}
n := iter.tr.root
for {
iter.stack = append(iter.stack, genericIterStackItem[T]{n, 0})
if n.leaf() {
break
}
n = (*n.children)[0]
}
s := &iter.stack[len(iter.stack)-1]
iter.item = s.n.items[s.i]
return true
}
// Last moves iterator to last item in tree.
// Returns false if the tree is empty.
func (iter *GenericIter[T]) Last() bool {
if iter.tr == nil {
return false
}
iter.seeked = true
iter.stack = iter.stack[:0]
if iter.tr.root == nil {
return false
}
n := iter.tr.root
for {
iter.stack = append(iter.stack, genericIterStackItem[T]{n, len(n.items)})
if n.leaf() {
iter.stack[len(iter.stack)-1].i--
break
}
n = (*n.children)[len(n.items)]
}
s := &iter.stack[len(iter.stack)-1]
iter.item = s.n.items[s.i]
return true
}
// Release the iterator.
func (iter *GenericIter[T]) Release() {
if iter.tr == nil {
return
}
if iter.locked {
iter.tr.runlock()
iter.locked = false
}
iter.stack = nil
iter.tr = nil
}
// Next moves iterator to the next item in iterator.
// Returns false if the tree is empty or the iterator is at the end of
// the tree.
func (iter *GenericIter[T]) Next() bool {
if iter.tr == nil {
return false
}
if !iter.seeked {
return iter.First()
}
if len(iter.stack) == 0 {
if iter.atstart {
return iter.First() && iter.Next()
}
return false
}
s := &iter.stack[len(iter.stack)-1]
s.i++
if s.n.leaf() {
if s.i == len(s.n.items) {
for {
iter.stack = iter.stack[:len(iter.stack)-1]
if len(iter.stack) == 0 {
iter.atend = true
return false
}
s = &iter.stack[len(iter.stack)-1]
if s.i < len(s.n.items) {
break
}
}
}
} else {
n := (*s.n.children)[s.i]
for {
iter.stack = append(iter.stack, genericIterStackItem[T]{n, 0})
if n.leaf() {
break
}
n = (*n.children)[0]
}
}
s = &iter.stack[len(iter.stack)-1]
iter.item = s.n.items[s.i]
return true
}
// Prev moves iterator to the previous item in iterator.
// Returns false if the tree is empty or the iterator is at the beginning of
// the tree.
func (iter *GenericIter[T]) Prev() bool {
if iter.tr == nil {
return false
}
if !iter.seeked {
return false
}
if len(iter.stack) == 0 {
if iter.atend {
return iter.Last() && iter.Prev()
}
return false
}
s := &iter.stack[len(iter.stack)-1]
if s.n.leaf() {
s.i--
if s.i == -1 {
for {
iter.stack = iter.stack[:len(iter.stack)-1]
if len(iter.stack) == 0 {
iter.atstart = true
return false
}
s = &iter.stack[len(iter.stack)-1]
s.i--
if s.i > -1 {
break
}
}
}
} else {
n := (*s.n.children)[s.i]
for {
iter.stack = append(iter.stack, genericIterStackItem[T]{n, len(n.items)})
if n.leaf() {
iter.stack[len(iter.stack)-1].i--
break
}
n = (*n.children)[len(n.items)]
}
}
s = &iter.stack[len(iter.stack)-1]
iter.item = s.n.items[s.i]
return true
}
// Item returns the current iterator item.
func (iter *GenericIter[T]) Item() T {
return iter.item
}
// Items returns all the items in order.
func (tr *BTreeG[T]) Items() []T {
items := make([]T, 0, tr.Len())
if tr.root != nil {
items = tr.root.aitems(items)
}
return items
}
func (n *node[T]) aitems(items []T) []T {
if n.leaf() {
return append(items, n.items...)
}
for i := 0; i < len(n.items); i++ {
items = (*n.children)[i].aitems(items)
items = append(items, n.items[i])
}
return (*n.children)[len(*n.children)-1].aitems(items)
}
// Generic BTree
// Deprecated: use BTreeG
type Generic[T any] struct {
*BTreeG[T]
}
// NewGeneric returns a generic BTree
// Deprecated: use NewBTreeG
func NewGeneric[T any](less func(a, b T) bool) *Generic[T] {
return &Generic[T]{NewBTreeGOptions(less, Options{})}
}
// NewGenericOptions returns a generic BTree
// Deprecated: use NewBTreeGOptions
func NewGenericOptions[T any](less func(a, b T) bool, opts Options) *Generic[T] {
return &Generic[T]{NewBTreeGOptions(less, opts)}
}
func (tr *Generic[T]) Copy() *Generic[T] {
return &Generic[T]{tr.BTreeG.Copy()}
}