ergo/vendor/github.com/golang-jwt/jwt/v5/parser.go

239 lines
7.8 KiB
Go

package jwt
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"strings"
)
type Parser struct {
// If populated, only these methods will be considered valid.
validMethods []string
// Use JSON Number format in JSON decoder.
useJSONNumber bool
// Skip claims validation during token parsing.
skipClaimsValidation bool
validator *Validator
decodeStrict bool
decodePaddingAllowed bool
}
// NewParser creates a new Parser with the specified options
func NewParser(options ...ParserOption) *Parser {
p := &Parser{
validator: &Validator{},
}
// Loop through our parsing options and apply them
for _, option := range options {
option(p)
}
return p
}
// Parse parses, validates, verifies the signature and returns the parsed token.
// keyFunc will receive the parsed token and should return the key for validating.
func (p *Parser) Parse(tokenString string, keyFunc Keyfunc) (*Token, error) {
return p.ParseWithClaims(tokenString, MapClaims{}, keyFunc)
}
// ParseWithClaims parses, validates, and verifies like Parse, but supplies a default object implementing the Claims
// interface. This provides default values which can be overridden and allows a caller to use their own type, rather
// than the default MapClaims implementation of Claims.
//
// Note: If you provide a custom claim implementation that embeds one of the standard claims (such as RegisteredClaims),
// make sure that a) you either embed a non-pointer version of the claims or b) if you are using a pointer, allocate the
// proper memory for it before passing in the overall claims, otherwise you might run into a panic.
func (p *Parser) ParseWithClaims(tokenString string, claims Claims, keyFunc Keyfunc) (*Token, error) {
token, parts, err := p.ParseUnverified(tokenString, claims)
if err != nil {
return token, err
}
// Verify signing method is in the required set
if p.validMethods != nil {
var signingMethodValid = false
var alg = token.Method.Alg()
for _, m := range p.validMethods {
if m == alg {
signingMethodValid = true
break
}
}
if !signingMethodValid {
// signing method is not in the listed set
return token, newError(fmt.Sprintf("signing method %v is invalid", alg), ErrTokenSignatureInvalid)
}
}
// Decode signature
token.Signature, err = p.DecodeSegment(parts[2])
if err != nil {
return token, newError("could not base64 decode signature", ErrTokenMalformed, err)
}
text := strings.Join(parts[0:2], ".")
// Lookup key(s)
if keyFunc == nil {
// keyFunc was not provided. short circuiting validation
return token, newError("no keyfunc was provided", ErrTokenUnverifiable)
}
got, err := keyFunc(token)
if err != nil {
return token, newError("error while executing keyfunc", ErrTokenUnverifiable, err)
}
switch have := got.(type) {
case VerificationKeySet:
if len(have.Keys) == 0 {
return token, newError("keyfunc returned empty verification key set", ErrTokenUnverifiable)
}
// Iterate through keys and verify signature, skipping the rest when a match is found.
// Return the last error if no match is found.
for _, key := range have.Keys {
if err = token.Method.Verify(text, token.Signature, key); err == nil {
break
}
}
default:
err = token.Method.Verify(text, token.Signature, have)
}
if err != nil {
return token, newError("", ErrTokenSignatureInvalid, err)
}
// Validate Claims
if !p.skipClaimsValidation {
// Make sure we have at least a default validator
if p.validator == nil {
p.validator = NewValidator()
}
if err := p.validator.Validate(claims); err != nil {
return token, newError("", ErrTokenInvalidClaims, err)
}
}
// No errors so far, token is valid.
token.Valid = true
return token, nil
}
// ParseUnverified parses the token but doesn't validate the signature.
//
// WARNING: Don't use this method unless you know what you're doing.
//
// It's only ever useful in cases where you know the signature is valid (since it has already
// been or will be checked elsewhere in the stack) and you want to extract values from it.
func (p *Parser) ParseUnverified(tokenString string, claims Claims) (token *Token, parts []string, err error) {
parts = strings.Split(tokenString, ".")
if len(parts) != 3 {
return nil, parts, newError("token contains an invalid number of segments", ErrTokenMalformed)
}
token = &Token{Raw: tokenString}
// parse Header
var headerBytes []byte
if headerBytes, err = p.DecodeSegment(parts[0]); err != nil {
return token, parts, newError("could not base64 decode header", ErrTokenMalformed, err)
}
if err = json.Unmarshal(headerBytes, &token.Header); err != nil {
return token, parts, newError("could not JSON decode header", ErrTokenMalformed, err)
}
// parse Claims
token.Claims = claims
claimBytes, err := p.DecodeSegment(parts[1])
if err != nil {
return token, parts, newError("could not base64 decode claim", ErrTokenMalformed, err)
}
// If `useJSONNumber` is enabled then we must use *json.Decoder to decode
// the claims. However, this comes with a performance penalty so only use
// it if we must and, otherwise, simple use json.Unmarshal.
if !p.useJSONNumber {
// JSON Unmarshal. Special case for map type to avoid weird pointer behavior.
if c, ok := token.Claims.(MapClaims); ok {
err = json.Unmarshal(claimBytes, &c)
} else {
err = json.Unmarshal(claimBytes, &claims)
}
} else {
dec := json.NewDecoder(bytes.NewBuffer(claimBytes))
dec.UseNumber()
// JSON Decode. Special case for map type to avoid weird pointer behavior.
if c, ok := token.Claims.(MapClaims); ok {
err = dec.Decode(&c)
} else {
err = dec.Decode(&claims)
}
}
if err != nil {
return token, parts, newError("could not JSON decode claim", ErrTokenMalformed, err)
}
// Lookup signature method
if method, ok := token.Header["alg"].(string); ok {
if token.Method = GetSigningMethod(method); token.Method == nil {
return token, parts, newError("signing method (alg) is unavailable", ErrTokenUnverifiable)
}
} else {
return token, parts, newError("signing method (alg) is unspecified", ErrTokenUnverifiable)
}
return token, parts, nil
}
// DecodeSegment decodes a JWT specific base64url encoding. This function will
// take into account whether the [Parser] is configured with additional options,
// such as [WithStrictDecoding] or [WithPaddingAllowed].
func (p *Parser) DecodeSegment(seg string) ([]byte, error) {
encoding := base64.RawURLEncoding
if p.decodePaddingAllowed {
if l := len(seg) % 4; l > 0 {
seg += strings.Repeat("=", 4-l)
}
encoding = base64.URLEncoding
}
if p.decodeStrict {
encoding = encoding.Strict()
}
return encoding.DecodeString(seg)
}
// Parse parses, validates, verifies the signature and returns the parsed token.
// keyFunc will receive the parsed token and should return the cryptographic key
// for verifying the signature. The caller is strongly encouraged to set the
// WithValidMethods option to validate the 'alg' claim in the token matches the
// expected algorithm. For more details about the importance of validating the
// 'alg' claim, see
// https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
func Parse(tokenString string, keyFunc Keyfunc, options ...ParserOption) (*Token, error) {
return NewParser(options...).Parse(tokenString, keyFunc)
}
// ParseWithClaims is a shortcut for NewParser().ParseWithClaims().
//
// Note: If you provide a custom claim implementation that embeds one of the
// standard claims (such as RegisteredClaims), make sure that a) you either
// embed a non-pointer version of the claims or b) if you are using a pointer,
// allocate the proper memory for it before passing in the overall claims,
// otherwise you might run into a panic.
func ParseWithClaims(tokenString string, claims Claims, keyFunc Keyfunc, options ...ParserOption) (*Token, error) {
return NewParser(options...).ParseWithClaims(tokenString, claims, keyFunc)
}