3
0
mirror of https://github.com/ergochat/ergo.git synced 2024-11-28 23:19:30 +01:00
ergo/irc/flatip/flatip.go
Shivaram Lingamneni fd45529d94 fix #1842
Warn about banning a single IPv6 address
2021-11-30 03:27:40 -05:00

221 lines
5.3 KiB
Go

// Copyright 2020 Shivaram Lingamneni <slingamn@cs.stanford.edu>
// Copyright 2009 The Go Authors
// Released under the MIT license
package flatip
import (
"bytes"
"errors"
"net"
)
var (
v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
IPv6loopback = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
IPv6zero = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
IPv4zero = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0, 0, 0, 0}
ErrInvalidIPString = errors.New("String could not be interpreted as an IP address")
)
// packed versions of net.IP and net.IPNet; these are pure value types,
// so they can be compared with == and used as map keys.
// IP is a 128-bit representation of an IP address, using the 4-in-6 mapping
// to represent IPv4 addresses.
type IP [16]byte
// IPNet is a IP network. In a valid value, all bits after PrefixLen are zeroes.
type IPNet struct {
IP
PrefixLen uint8
}
// NetIP converts an IP into a net.IP.
func (ip IP) NetIP() (result net.IP) {
result = make(net.IP, 16)
copy(result[:], ip[:])
return
}
// FromNetIP converts a net.IP into an IP.
func FromNetIP(ip net.IP) (result IP) {
if len(ip) == 16 {
copy(result[:], ip[:])
} else {
result[10] = 0xff
result[11] = 0xff
copy(result[12:], ip[:])
}
return
}
// IPv4 returns the IP address representation of a.b.c.d
func IPv4(a, b, c, d byte) (result IP) {
copy(result[:12], v4InV6Prefix)
result[12] = a
result[13] = b
result[14] = c
result[15] = d
return
}
// ParseIP parses a string representation of an IP address into an IP.
// Unlike net.ParseIP, it returns an error instead of a zero value on failure,
// since the zero value of `IP` is a representation of a valid IP (::0, the
// IPv6 "unspecified address").
func ParseIP(ipstr string) (ip IP, err error) {
// TODO reimplement this without net.ParseIP
netip := net.ParseIP(ipstr)
if netip == nil {
err = ErrInvalidIPString
return
}
netip = netip.To16()
copy(ip[:], netip)
return
}
// String returns the string representation of an IP
func (ip IP) String() string {
// TODO reimplement this without using (net.IP).String()
return (net.IP)(ip[:]).String()
}
// IsIPv4 returns whether the IP is an IPv4 address.
func (ip IP) IsIPv4() bool {
return bytes.Equal(ip[:12], v4InV6Prefix)
}
// IsLoopback returns whether the IP is a loopback address.
func (ip IP) IsLoopback() bool {
if ip.IsIPv4() {
return ip[12] == 127
} else {
return ip == IPv6loopback
}
}
func (ip IP) IsUnspecified() bool {
return ip == IPv4zero || ip == IPv6zero
}
func rawCidrMask(length int) (m IP) {
n := uint(length)
for i := 0; i < 16; i++ {
if n >= 8 {
m[i] = 0xff
n -= 8
continue
}
m[i] = ^byte(0xff >> n)
return
}
return
}
func (ip IP) applyMask(mask IP) (result IP) {
for i := 0; i < 16; i += 1 {
result[i] = ip[i] & mask[i]
}
return
}
func cidrMask(ones, bits int) (result IP) {
switch bits {
case 32:
return rawCidrMask(96 + ones)
case 128:
return rawCidrMask(ones)
default:
return
}
}
// Mask returns the result of masking ip with the CIDR mask of
// length 'ones', out of a total of 'bits' (which must be either
// 32 for an IPv4 subnet or 128 for an IPv6 subnet).
func (ip IP) Mask(ones, bits int) (result IP) {
return ip.applyMask(cidrMask(ones, bits))
}
// ToNetIPNet converts an IPNet into a net.IPNet.
func (cidr IPNet) ToNetIPNet() (result net.IPNet) {
return net.IPNet{
IP: cidr.IP.NetIP(),
Mask: net.CIDRMask(int(cidr.PrefixLen), 128),
}
}
// Contains retuns whether the network contains `ip`.
func (cidr IPNet) Contains(ip IP) bool {
maskedIP := ip.Mask(int(cidr.PrefixLen), 128)
return cidr.IP == maskedIP
}
func (cidr IPNet) Size() (ones, bits int) {
if cidr.IP.IsIPv4() {
return int(cidr.PrefixLen) - 96, 32
} else {
return int(cidr.PrefixLen), 128
}
}
// FromNetIPnet converts a net.IPNet into an IPNet.
func FromNetIPNet(network net.IPNet) (result IPNet) {
ones, _ := network.Mask.Size()
if len(network.IP) == 16 {
copy(result.IP[:], network.IP[:])
} else {
result.IP[10] = 0xff
result.IP[11] = 0xff
copy(result.IP[12:], network.IP[:])
ones += 96
}
// perform masking so that equal CIDRs are ==
result.IP = result.IP.Mask(ones, 128)
result.PrefixLen = uint8(ones)
return
}
// String returns a string representation of an IPNet.
func (cidr IPNet) String() string {
ip := make(net.IP, 16)
copy(ip[:], cidr.IP[:])
ipnet := net.IPNet{
IP: ip,
Mask: net.CIDRMask(int(cidr.PrefixLen), 128),
}
return ipnet.String()
}
// HumanReadableString returns a string representation of an IPNet;
// if the network contains only a single IP address, it returns
// a representation of that address.
func (cidr IPNet) HumanReadableString() string {
if cidr.PrefixLen == 128 {
return cidr.IP.String()
}
return cidr.String()
}
// IsZero tests whether ipnet is the zero value of an IPNet, 0::0/0.
// Although this is a valid subnet, it can still be used as a sentinel
// value in some contexts.
func (ipnet IPNet) IsZero() bool {
return ipnet == IPNet{}
}
// ParseCIDR parses a string representation of an IP network in CIDR notation,
// then returns it as an IPNet (along with the original, unmasked address).
func ParseCIDR(netstr string) (ip IP, ipnet IPNet, err error) {
// TODO reimplement this without net.ParseCIDR
nip, nipnet, err := net.ParseCIDR(netstr)
if err != nil {
return
}
return FromNetIP(nip), FromNetIPNet(*nipnet), nil
}