mirror of
https://github.com/ergochat/ergo.git
synced 2024-11-22 20:09:41 +01:00
194 lines
5.7 KiB
Go
194 lines
5.7 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package sha3
|
|
|
|
// spongeDirection indicates the direction bytes are flowing through the sponge.
|
|
type spongeDirection int
|
|
|
|
const (
|
|
// spongeAbsorbing indicates that the sponge is absorbing input.
|
|
spongeAbsorbing spongeDirection = iota
|
|
// spongeSqueezing indicates that the sponge is being squeezed.
|
|
spongeSqueezing
|
|
)
|
|
|
|
const (
|
|
// maxRate is the maximum size of the internal buffer. SHAKE-256
|
|
// currently needs the largest buffer.
|
|
maxRate = 168
|
|
)
|
|
|
|
type state struct {
|
|
// Generic sponge components.
|
|
a [25]uint64 // main state of the hash
|
|
buf []byte // points into storage
|
|
rate int // the number of bytes of state to use
|
|
|
|
// dsbyte contains the "domain separation" bits and the first bit of
|
|
// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
|
|
// SHA-3 and SHAKE functions by appending bitstrings to the message.
|
|
// Using a little-endian bit-ordering convention, these are "01" for SHA-3
|
|
// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
|
|
// padding rule from section 5.1 is applied to pad the message to a multiple
|
|
// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
|
|
// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
|
|
// giving 00000110b (0x06) and 00011111b (0x1f).
|
|
// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
|
|
// "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
|
|
// Extendable-Output Functions (May 2014)"
|
|
dsbyte byte
|
|
|
|
storage storageBuf
|
|
|
|
// Specific to SHA-3 and SHAKE.
|
|
outputLen int // the default output size in bytes
|
|
state spongeDirection // whether the sponge is absorbing or squeezing
|
|
}
|
|
|
|
// BlockSize returns the rate of sponge underlying this hash function.
|
|
func (d *state) BlockSize() int { return d.rate }
|
|
|
|
// Size returns the output size of the hash function in bytes.
|
|
func (d *state) Size() int { return d.outputLen }
|
|
|
|
// Reset clears the internal state by zeroing the sponge state and
|
|
// the byte buffer, and setting Sponge.state to absorbing.
|
|
func (d *state) Reset() {
|
|
// Zero the permutation's state.
|
|
for i := range d.a {
|
|
d.a[i] = 0
|
|
}
|
|
d.state = spongeAbsorbing
|
|
d.buf = d.storage.asBytes()[:0]
|
|
}
|
|
|
|
func (d *state) clone() *state {
|
|
ret := *d
|
|
if ret.state == spongeAbsorbing {
|
|
ret.buf = ret.storage.asBytes()[:len(ret.buf)]
|
|
} else {
|
|
ret.buf = ret.storage.asBytes()[d.rate-cap(d.buf) : d.rate]
|
|
}
|
|
|
|
return &ret
|
|
}
|
|
|
|
// permute applies the KeccakF-1600 permutation. It handles
|
|
// any input-output buffering.
|
|
func (d *state) permute() {
|
|
switch d.state {
|
|
case spongeAbsorbing:
|
|
// If we're absorbing, we need to xor the input into the state
|
|
// before applying the permutation.
|
|
xorIn(d, d.buf)
|
|
d.buf = d.storage.asBytes()[:0]
|
|
keccakF1600(&d.a)
|
|
case spongeSqueezing:
|
|
// If we're squeezing, we need to apply the permutatin before
|
|
// copying more output.
|
|
keccakF1600(&d.a)
|
|
d.buf = d.storage.asBytes()[:d.rate]
|
|
copyOut(d, d.buf)
|
|
}
|
|
}
|
|
|
|
// pads appends the domain separation bits in dsbyte, applies
|
|
// the multi-bitrate 10..1 padding rule, and permutes the state.
|
|
func (d *state) padAndPermute(dsbyte byte) {
|
|
if d.buf == nil {
|
|
d.buf = d.storage.asBytes()[:0]
|
|
}
|
|
// Pad with this instance's domain-separator bits. We know that there's
|
|
// at least one byte of space in d.buf because, if it were full,
|
|
// permute would have been called to empty it. dsbyte also contains the
|
|
// first one bit for the padding. See the comment in the state struct.
|
|
d.buf = append(d.buf, dsbyte)
|
|
zerosStart := len(d.buf)
|
|
d.buf = d.storage.asBytes()[:d.rate]
|
|
for i := zerosStart; i < d.rate; i++ {
|
|
d.buf[i] = 0
|
|
}
|
|
// This adds the final one bit for the padding. Because of the way that
|
|
// bits are numbered from the LSB upwards, the final bit is the MSB of
|
|
// the last byte.
|
|
d.buf[d.rate-1] ^= 0x80
|
|
// Apply the permutation
|
|
d.permute()
|
|
d.state = spongeSqueezing
|
|
d.buf = d.storage.asBytes()[:d.rate]
|
|
copyOut(d, d.buf)
|
|
}
|
|
|
|
// Write absorbs more data into the hash's state. It produces an error
|
|
// if more data is written to the ShakeHash after writing
|
|
func (d *state) Write(p []byte) (written int, err error) {
|
|
if d.state != spongeAbsorbing {
|
|
panic("sha3: write to sponge after read")
|
|
}
|
|
if d.buf == nil {
|
|
d.buf = d.storage.asBytes()[:0]
|
|
}
|
|
written = len(p)
|
|
|
|
for len(p) > 0 {
|
|
if len(d.buf) == 0 && len(p) >= d.rate {
|
|
// The fast path; absorb a full "rate" bytes of input and apply the permutation.
|
|
xorIn(d, p[:d.rate])
|
|
p = p[d.rate:]
|
|
keccakF1600(&d.a)
|
|
} else {
|
|
// The slow path; buffer the input until we can fill the sponge, and then xor it in.
|
|
todo := d.rate - len(d.buf)
|
|
if todo > len(p) {
|
|
todo = len(p)
|
|
}
|
|
d.buf = append(d.buf, p[:todo]...)
|
|
p = p[todo:]
|
|
|
|
// If the sponge is full, apply the permutation.
|
|
if len(d.buf) == d.rate {
|
|
d.permute()
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Read squeezes an arbitrary number of bytes from the sponge.
|
|
func (d *state) Read(out []byte) (n int, err error) {
|
|
// If we're still absorbing, pad and apply the permutation.
|
|
if d.state == spongeAbsorbing {
|
|
d.padAndPermute(d.dsbyte)
|
|
}
|
|
|
|
n = len(out)
|
|
|
|
// Now, do the squeezing.
|
|
for len(out) > 0 {
|
|
n := copy(out, d.buf)
|
|
d.buf = d.buf[n:]
|
|
out = out[n:]
|
|
|
|
// Apply the permutation if we've squeezed the sponge dry.
|
|
if len(d.buf) == 0 {
|
|
d.permute()
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Sum applies padding to the hash state and then squeezes out the desired
|
|
// number of output bytes.
|
|
func (d *state) Sum(in []byte) []byte {
|
|
// Make a copy of the original hash so that caller can keep writing
|
|
// and summing.
|
|
dup := d.clone()
|
|
hash := make([]byte, dup.outputLen)
|
|
dup.Read(hash)
|
|
return append(in, hash...)
|
|
}
|