3
0
mirror of https://github.com/ergochat/ergo.git synced 2025-01-12 05:02:35 +01:00
ergo/vendor/github.com/GehirnInc/crypt/md5_crypt/md5_crypt.go

144 lines
3.3 KiB
Go
Raw Normal View History

2020-10-02 22:48:37 +02:00
// (C) Copyright 2012, Jeramey Crawford <jeramey@antihe.ro>. All
// rights reserved. Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package md5_crypt implements the standard Unix MD5-crypt algorithm created by
// Poul-Henning Kamp for FreeBSD.
package md5_crypt
import (
"bytes"
"crypto/md5"
"crypto/subtle"
"github.com/GehirnInc/crypt"
"github.com/GehirnInc/crypt/common"
"github.com/GehirnInc/crypt/internal"
)
func init() {
crypt.RegisterCrypt(crypt.MD5, New, MagicPrefix)
}
// NOTE: Cisco IOS only allows salts of length 4.
const (
MagicPrefix = "$1$"
SaltLenMin = 1 // Real minimum is 0, but that isn't useful.
SaltLenMax = 8
RoundsDefault = 1000
)
type crypter struct{ Salt common.Salt }
// New returns a new crypt.Crypter computing the MD5-crypt password hashing.
func New() crypt.Crypter {
return &crypter{
common.Salt{
MagicPrefix: []byte(MagicPrefix),
SaltLenMin: SaltLenMin,
SaltLenMax: SaltLenMax,
RoundsDefault: RoundsDefault,
},
}
}
func (c *crypter) Generate(key, salt []byte) (result string, err error) {
if len(salt) == 0 {
salt = c.Salt.Generate(SaltLenMax)
}
salt, _, _, _, err = c.Salt.Decode(salt)
if err != nil {
return
}
keyLen := len(key)
h := md5.New()
// Compute sumB
h.Write(key)
h.Write(salt)
h.Write(key)
sumB := h.Sum(nil)
// Compute sumA
h.Reset()
h.Write(key)
h.Write(c.Salt.MagicPrefix)
h.Write(salt)
h.Write(internal.RepeatByteSequence(sumB, keyLen))
// The original implementation now does something weird:
// For every 1 bit in the key, the first 0 is added to the buffer
// For every 0 bit, the first character of the key
// This does not seem to be what was intended but we have to follow this to
// be compatible.
for i := keyLen; i > 0; i >>= 1 {
if i%2 == 0 {
h.Write(key[0:1])
} else {
h.Write([]byte{0})
}
}
sumA := h.Sum(nil)
internal.CleanSensitiveData(sumB)
// In fear of password crackers here comes a quite long loop which just
// processes the output of the previous round again.
// We cannot ignore this here.
for i := 0; i < RoundsDefault; i++ {
h.Reset()
// Add key or last result.
if i%2 != 0 {
h.Write(key)
} else {
h.Write(sumA)
}
// Add salt for numbers not divisible by 3.
if i%3 != 0 {
h.Write(salt)
}
// Add key for numbers not divisible by 7.
if i%7 != 0 {
h.Write(key)
}
// Add key or last result.
if i&1 != 0 {
h.Write(sumA)
} else {
h.Write(key)
}
copy(sumA, h.Sum(nil))
}
buf := bytes.Buffer{}
buf.Grow(len(c.Salt.MagicPrefix) + len(salt) + 1 + 22)
buf.Write(c.Salt.MagicPrefix)
buf.Write(salt)
buf.WriteByte('$')
buf.Write(common.Base64_24Bit([]byte{
sumA[12], sumA[6], sumA[0],
sumA[13], sumA[7], sumA[1],
sumA[14], sumA[8], sumA[2],
sumA[15], sumA[9], sumA[3],
sumA[5], sumA[10], sumA[4],
sumA[11],
}))
return buf.String(), nil
}
func (c *crypter) Verify(hashedKey string, key []byte) error {
newHash, err := c.Generate(key, []byte(hashedKey))
if err != nil {
return err
}
if subtle.ConstantTimeCompare([]byte(newHash), []byte(hashedKey)) != 1 {
return crypt.ErrKeyMismatch
}
return nil
}
func (c *crypter) Cost(hashedKey string) (int, error) { return RoundsDefault, nil }
func (c *crypter) SetSalt(salt common.Salt) { c.Salt = salt }