luksrku/server.c
Johannes Bauer 425e2dcd66 Add client code back in
Client code basis back in, parsing of command line options as well.
Client does not do anything yet, though.
2019-10-23 20:13:25 +02:00

422 lines
12 KiB
C

/*
luksrku - Tool to remotely unlock LUKS disks using TLS.
Copyright (C) 2016-2016 Johannes Bauer
This file is part of luksrku.
luksrku is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; this program is ONLY licensed under
version 3 of the License, later versions are explicitly excluded.
luksrku is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with luksrku; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Johannes Bauer <JohannesBauer@gmx.de>
*/
#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdbool.h>
#include <unistd.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
#include "log.h"
#include "openssl.h"
#include "global.h"
#include "msg.h"
#include "util.h"
#include "server.h"
#include "luks.h"
#include "pgmopts.h"
#include "uuid.h"
#include "thread.h"
#include "keydb.h"
static int create_tcp_server_socket(int port) {
int s;
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_ANY);
s = socket(AF_INET, SOCK_STREAM, 0);
if (s < 0) {
log_libc(LLVL_ERROR, "Unable to create TCP socket(2)");
return -1;
}
{
int value = 1;
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &value, sizeof(value));
}
if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) < 0) {
log_libc(LLVL_ERROR, "Unable to bind(2) socket");
return -1;
}
if (listen(s, 1) < 0) {
log_libc(LLVL_ERROR, "Unable to listen(2) on socket");
return -1;
}
return s;
}
#if 0
static const struct keyentry_t *server_key;
static bool unlock_disk(const struct diskentry_t *disk, const uint8_t *passphrase, int passphrase_length) {
char ascii_uuid[40];
sprintf_uuid(ascii_uuid, disk->disk_uuid);
log_msg(LLVL_INFO, "Trying to unlock disk %s with UUID %s", disk->devmapper_name, ascii_uuid);
#ifdef DEBUG
fprintf(stderr, "Using %d bytes key for unlocking: ", passphrase_length);
dump_hex(stderr, passphrase, passphrase_length);
fprintf(stderr, "\n");
#endif
if (is_luks_device_opened(disk->devmapper_name)) {
log_msg(LLVL_INFO, "Disk %s already unlocked, nothing to do.", disk->devmapper_name, ascii_uuid);
return true;
}
return open_luks_device_pw(disk->disk_uuid, disk->devmapper_name, passphrase, passphrase_length);
}
static bool all_disks_unlocked(const struct keyentry_t *keyentry) {
for (int i = 0; i < MAX_DISKS_PER_HOST; i++) {
if (keyentry->disk_keys[i].occupied && !is_luks_device_opened(keyentry->disk_keys[i].devmapper_name)) {
return false;
}
}
return true;
}
static bool tls_server(const struct keyentry_t *key, const struct options_t *options) {
if (all_disks_unlocked(key)) {
log_msg(LLVL_INFO, "Starting of server not necessary, all disks already unlocked.");
return true;
}
struct generic_tls_ctx_t gctx;
create_generic_tls_context(&gctx, true);
server_key = key;
{
char ascii_host_uuid[40];
sprintf_uuid(ascii_host_uuid, key->host_uuid);
SSL_CTX_use_psk_identity_hint(gctx.ctx, ascii_host_uuid);
}
SSL_CTX_set_psk_server_callback(gctx.ctx, psk_server_callback);
int tcp_sock = create_tcp_socket(options->port);
if (tcp_sock == -1) {
log_msg(LLVL_ERROR, "Cannot start server without server socket.");
free_generic_tls_context(&gctx);
return false;
}
int udp_sock = create_udp_socket();
if (tcp_sock == -1) {
log_msg(LLVL_ERROR, "Cannot broadcast without announcement UDP socket.");
close(tcp_sock);
free_generic_tls_context(&gctx);
return false;
}
log_msg(LLVL_DEBUG, "Created listening socket on port %d", options->port);
int tries = 0;
int failed_broadcast_cnt = 0;
while ((options->unlock_cnt == 0) || (tries < options->unlock_cnt)) {
struct sockaddr_in addr;
unsigned int len = sizeof(addr);
log_msg(LLVL_DEBUG, "Waiting for incoming connection...");
if (!announce_waiting_message(udp_sock, options->port, key)) {
failed_broadcast_cnt++;
if ((options->max_broadcast_errs != 0) && (failed_broadcast_cnt >= options->max_broadcast_errs)) {
log_msg(LLVL_ERROR, "Too many broadcast errors, aborting. Network unavailable?");
break;
}
}
if (!socket_wait_acceptable(tcp_sock, WAITING_MESSAGE_BROADCAST_INTERVAL_MILLISECONDS)) {
/* No connection pending, timeout. */
continue;
}
log_msg(LLVL_DEBUG, "Trying to accept connection...");
int client = accept(tcp_sock, (struct sockaddr*)&addr, &len);
if (client < 0) {
log_libc(LLVL_ERROR, "Unable to accept(2)");
close(udp_sock);
close(tcp_sock);
free_generic_tls_context(&gctx);
return false;
}
SSL *ssl = SSL_new(gctx.ctx);
SSL_set_fd(ssl, client);
if (SSL_accept(ssl) <= 0) {
ERR_print_errors_fp(stderr);
} else {
tries++;
log_msg(LLVL_DEBUG, "Client connected, waiting for data...");
while (true) {
struct msg_t msg;
int rxlen = SSL_read(ssl, &msg, sizeof(msg));
if (rxlen == 0) {
/* Client severed the connection */
break;
}
if (rxlen != sizeof(msg)) {
log_msg(LLVL_ERROR, "Truncated message (%d bytes) received, terminating connection. Expected %d bytes.", rxlen, sizeof(msg));
break;
}
msg_to_hbo(&msg);
if ((msg.passphrase_length == 0) || (msg.passphrase_length > MAX_PASSPHRASE_LENGTH)) {
log_msg(LLVL_FATAL, "Client sent malformed message indicating illegal passphrase length of %d bytes. Aborting connection.", msg.passphrase_length);
break;
}
/* Now check if this is one of they keys we're actually looking for */
bool found = false;
for (int i = 0; i < MAX_DISKS_PER_HOST; i++) {
if (!memcmp(key->disk_keys[i].disk_uuid, msg.disk_uuid, 16)) {
bool success = unlock_disk(&key->disk_keys[i], msg.passphrase, msg.passphrase_length);
log_msg(LLVL_DEBUG, "Unlocking of disk was %s", success ? "successful" : "unsuccessful");
found = true;
break;
}
}
if (!found) {
char ascii_uuid[40];
sprintf_uuid(ascii_uuid, msg.disk_uuid);
log_msg(LLVL_INFO, "Client sent passphrase for UUID %s; we were not expecting it. Ignored.", ascii_uuid);
}
}
}
SSL_free(ssl);
close(client);
/* Connection closed */
if (all_disks_unlocked(key)) {
log_msg(LLVL_INFO, "All disks successfully unlocked.");
break;
} else {
log_msg(LLVL_DEBUG, "At least one disk remains locked after communication.");
}
}
close(udp_sock);
close(tcp_sock);
free_generic_tls_context(&gctx);
return true;
}
#endif
#if 0
static unsigned int psk_server_callback(SSL *ssl, const char *identity, unsigned char *psk, unsigned int max_psk_len) {
if (max_psk_len < PSK_SIZE_BYTES) {
log_msg(LLVL_FATAL, "Server error: max_psk_len too small.");
return 0;
}
if (strcmp(identity, CLIENT_PSK_IDENTITY)) {
log_msg(LLVL_FATAL, "Server error: client identity '%s' unexpected (expected '%s').", identity, CLIENT_PSK_IDENTITY);
return 0;
}
// memcpy(psk, server_key->psk, PSK_SIZE_BYTES);
return PSK_SIZE_BYTES;
}
#endif
struct client_ctx_t {
struct generic_tls_ctx_t *gctx;
const struct keydb_t *keydb;
const struct host_entry_t *host;
int fd;
};
static int psk_server_callback(SSL *ssl, const unsigned char *identity, size_t identity_len, SSL_SESSION **sessptr) {
struct client_ctx_t *ctx = (struct client_ctx_t*)SSL_get_app_data(ssl);
if (identity_len != ASCII_UUID_CHARACTER_COUNT) {
log_msg(LLVL_WARNING, "Received client identity of length %d, cannot be a UUID.", identity_len);
return 0;
}
char uuid_str[ASCII_UUID_BUFSIZE];
memcpy(uuid_str, identity, ASCII_UUID_CHARACTER_COUNT);
uuid_str[ASCII_UUID_CHARACTER_COUNT] = 0;
if (!is_valid_uuid(uuid_str)) {
log_msg(LLVL_WARNING, "Received client identity of length %d, but not a valid UUID.", identity_len);
return 0;
}
uint8_t uuid[16];
if (!parse_uuid(uuid, uuid_str)) {
log_msg(LLVL_ERROR, "Failed to parse valid UUID.");
return 0;
}
ctx->host = keydb_get_host_by_uuid(ctx->keydb, uuid);
if (!ctx->host) {
log_msg(LLVL_WARNING, "Client connected with client UUID %s, but not present in key database.", uuid_str);
return 0;
}
const uint8_t tls13_aes128gcmsha256_id[] = { 0x13, 0x01 };
const SSL_CIPHER *cipher = SSL_CIPHER_find(ssl, tls13_aes128gcmsha256_id);
if (!cipher) {
log_openssl(LLVL_ERROR, "Unable to look up SSL_CIPHER for TLSv1.3-PSK");
return 0;
}
SSL_SESSION *sess = SSL_SESSION_new();
if (!sess) {
log_openssl(LLVL_ERROR, "Failed to create SSL_SESSION context for client.");
return 0;
}
int return_value = 1;
do {
if (!SSL_SESSION_set1_master_key(sess, ctx->host->tls_psk, PSK_SIZE_BYTES)) {
log_openssl(LLVL_ERROR, "Failed to set TLSv1.3-PSK master key.");
return_value = 0;
break;
}
if (!SSL_SESSION_set_cipher(sess, cipher)) {
log_openssl(LLVL_ERROR, "Failed to set TLSv1.3-PSK cipher.");
return_value = 0;
break;
}
if (!SSL_SESSION_set_protocol_version(sess, TLS1_3_VERSION)) {
log_openssl(LLVL_ERROR, "Failed to set TLSv1.3-PSK protocol version.");
return_value = 0;
break;
}
} while (false);
if (return_value) {
*sessptr = sess;
} else {
SSL_SESSION_free(sess);
}
return return_value;
}
static void client_handler_thread(void *vctx) {
struct client_ctx_t *client = (struct client_ctx_t*)vctx;
SSL *ssl = SSL_new(client->gctx->ctx);
SSL_set_fd(ssl, client->fd);
SSL_set_app_data(ssl, client);
if (SSL_accept(ssl) <= 0) {
ERR_print_errors_fp(stderr);
} else {
if (client->host) {
log_msg(LLVL_DEBUG, "Client \"%s\" connected, sending unlock data for %d volumes.", client->host->host_name, client->host->volume_count);
for (unsigned int i = 0; i < client->host->volume_count; i++) {
const struct volume_entry_t *volume = &client->host->volumes[i];
struct msg_t msg = { 0 };
memcpy(msg.volume_uuid, volume->volume_uuid, 16);
memcpy(msg.luks_passphrase_raw, volume->luks_passphrase_raw, LUKS_PASSPHRASE_RAW_SIZE_BYTES);
int txlen = SSL_write(ssl, &msg, sizeof(msg));
OPENSSL_cleanse(&msg, sizeof(msg));
if (txlen != sizeof(msg)) {
log_msg(LLVL_WARNING, "Tried to send message of %d bytes, but sent %d. Severing connection to client.", sizeof(msg), txlen);
break;
}
}
} else {
log_msg(LLVL_FATAL, "Client connected, but no host set.");
}
}
SSL_free(ssl);
shutdown(client->fd, SHUT_RDWR);
close(client->fd);
}
bool keyserver_start(const struct pgmopts_server_t *opts) {
/* Load key database first */
struct keydb_t* keydb = keydb_read(opts->filename);
if (!keydb) {
log_msg(LLVL_FATAL, "Failed to load key database: %s", opts->filename);
return false;
}
if (!keydb->server_database) {
log_msg(LLVL_FATAL, "Not a server key database: %s", opts->filename);
keydb_free(keydb);
return false;
}
struct generic_tls_ctx_t gctx;
if (!create_generic_tls_context(&gctx, true)) {
log_msg(LLVL_FATAL, "Failed to create OpenSSL server context.");
return false;
}
SSL_CTX_set_psk_find_session_callback(gctx.ctx, psk_server_callback);
int tcp_sock = create_tcp_server_socket(opts->port);
if (tcp_sock == -1) {
log_msg(LLVL_ERROR, "Cannot start server without server socket.");
free_generic_tls_context(&gctx);
return false;
}
while (true) {
struct sockaddr_in addr;
unsigned int len = sizeof(addr);
int client = accept(tcp_sock, (struct sockaddr*)&addr, &len);
if (client < 0) {
log_libc(LLVL_ERROR, "Unable to accept(2)");
close(tcp_sock);
free_generic_tls_context(&gctx);
return false;
}
/* Client has connected, fire up client thread. */
struct client_ctx_t client_ctx = {
.gctx = &gctx,
.keydb = keydb,
.fd = client,
};
if (!pthread_create_detached_thread(client_handler_thread, &client_ctx, sizeof(client_ctx))) {
log_libc(LLVL_FATAL, "Unable to pthread_attr_init(3)");
close(tcp_sock);
free_generic_tls_context(&gctx);
return false;
}
}
free_generic_tls_context(&gctx);
return true;
}